This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128639 #29 Feb 16 2025 08:33:05 %S A128639 1,8,40,152,488,1392,3640,8896,20584,45512,96816,199200,398072,775216, %T A128639 1475264,2749776,5029736,9043344,16005352,27918304,48047280,81661504, %U A128639 137183136,227952960,374924152,610743224,985891568,1577869784,2504850112,3945854640,6170415888 %N A128639 Expansion of (1/3) * (c(q)^2 / c(q^2)) / (b(q)^2 / b(q^2)) in powers of q where b(), c() are cubic AGM theta functions. %C A128639 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %C A128639 Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). %H A128639 G. C. Greubel, <a href="/A128639/b128639.txt">Table of n, a(n) for n = 0..1000</a> %H A128639 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A128639 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A128639 Expansion of (phi(-q^3) / phi(-q))^4 in powers of q where phi() is a Ramanujan theta function. %F A128639 Expansion of ((eta(q^3) / eta(q))^2 * (eta(q^2) / eta(q^6)))^4 in powers of q. %F A128639 Euler transform of period 6 sequence [ 8, 4, 0, 4, 8, 0, ...]. %F A128639 G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u * (1-v) * (1-9*v) - (u-v)^2. %F A128639 G.f.: (Product_{k>0} (1 + x^k + x^(2*k)) / (1 - x^k + x^(2*k)) )^4. %F A128639 a(n) = 8 * A128638(n) unless n = 0. Convolution inverse of A128637. %F A128639 a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(9/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 08 2015 %F A128639 Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 1/3 + (1/9)*sqrt(3) + (1/9)*sqrt(9+6*sqrt(3)). - _Simon Plouffe_, Mar 02 2021 %e A128639 G.f. = 1 + 8*q + 40*q^2 + 152*q^3 + 488*q^4 + 1392*q^5 + 3640*q^6 + ... %t A128639 nmax = 40; CoefficientList[Series[Product[((1 + x^k + x^(2*k)) / (1 - x^k + x^(2*k)))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 08 2015 *) %o A128639 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^3 + A) / eta(x + A))^2 * eta(x^2 + A) / eta(x^6 + A))^4, n))}; %Y A128639 Cf. A128637, A128638. %K A128639 nonn %O A128639 0,2 %A A128639 _Michael Somos_, Mar 16 2007