This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128652 #33 Apr 05 2019 05:42:00 %S A128652 1,2,6,24,104,464,2088,9392,42064,187296,828776,3644912,15937776, %T A128652 69317984,300009744,1292654304,5547021728,23715100480,101046014952, %U A128652 429209373296,1817975905456,7680278380512,32368750662320 %N A128652 Number of square permutations of length n. %H A128652 Michael Albert, Steve Linton, Nik Ruskuc, Vincent Vatter, Steve Waton, <a href="http://hdl.handle.net/10023/2000">On convex permutations</a>, preprint. %H A128652 Michael Albert, Steve Linton, Nik Ruskuc, Vincent Vatter, Steve Waton, <a href="http://dx.doi.org/10.1016/j.disc.2011.01.009">On convex permutations</a>, Discrete Mathematics, vol.311, pp.715-722, (2011). %H A128652 A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Rinaldi/rinaldi5.html">Permutations defining convex permutominoes</a>, J. Int. Seq. 10 (2007) # 07.9.7. %H A128652 Enrica Duchi, <a href="https://arxiv.org/abs/1904.02691">A code for square permutations and convex permutominoes</a>, arXiv:1904.02691 [math.CO], 2019. %H A128652 Sergey Kitaev and Jeffrey Remmel, <a href="http://arxiv.org/abs/1201.1323">Simple marked mesh patterns</a>, arXiv preprint arXiv:1201.1323 [math.CO], 2012. %H A128652 S. Kitaev, J. Remmel, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Kitaev/kitaev5.html">Quadrant Marked Mesh Patterns</a>, J. Int. Seq. 15 (2012) # 12.4.7 %H A128652 T. Mansour and S. Severini, <a href="https://arxiv.org/abs/math/0603225">Grid polygons from permutations and their enumeration by the kernel method</a>, arXiv:math/0603225 [math.CO], 2006. %F A128652 a(n) = 2*(n+2) * 4^(n-3) - 4*(2*n-5) * C(2*n-6,n-3) for n>=2, a(1)=1. %F A128652 G.f.: x*(1-6*x+10*x^2-4*x^2*sqrt(1-4*x))/(1-4*x)^2 (See theorem 3.1 in Albert et al. reference). [_Joerg Arndt_, Jun 21 2011] %F A128652 Conjecture: +(n-3)*(n-8)*a(n) +2*(-4*n^2+43*n-96)*a(n-1) +8*(2*n-7)*(n-7)*a(n-2)=0. - _R. J. Mathar_, Oct 16 2017 %t A128652 a[1] = 1; a[n_] := 2(n+2) * 4^(n-3) - 4(2n-5) * Binomial[2n-6, n-3]; %t A128652 Array[a, 30] (* _Jean-François Alcover_, Jul 22 2018 *) %o A128652 (PARI) a(n) = if(n<=1,n,2*(n+2) * 4^(n-3) - 4*(2*n-5) * binomial(2*n-6,n-3)); /* _Joerg Arndt_, Jun 21 2011 */ %K A128652 nonn %O A128652 1,2 %A A128652 _Ralf Stephan_, May 08 2007