cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128701 Highly abundant numbers that are not products of consecutive primes with nonincreasing exponents, i.e., that are not of the form n=2^{e_2} * 3^{e_3} * ...* p^{e_p}, with e_2>=e_3>=...>=e_p.

This page as a plain text file.
%I A128701 #21 Jun 18 2019 18:24:05
%S A128701 1,3,10,18,20,42,84,90,108,168,300,336,504,540,600,630,660,1008,1200,
%T A128701 1560,1620,1980,2100,2340,2400,3024,3120,3240,3780,3960,4200,4680,
%U A128701 5880,6120,6240,7920,8400,8820
%N A128701 Highly abundant numbers that are not products of consecutive primes with nonincreasing exponents, i.e., that are not of the form n=2^{e_2} * 3^{e_3} * ...* p^{e_p}, with e_2>=e_3>=...>=e_p.
%C A128701 This is the subsequence of those highly abundant numbers (A002093) that have a different canonical structure to the superabundant numbers (A004394), the colossally abundant numbers (A004490), the highly composite numbers (A002182) and the superior highly composite numbers (A002201).
%H A128701 Amiram Eldar, <a href="/A128701/b128701.txt">Table of n, a(n) for n = 1..8404</a>
%H A128701 L. Alaoglu and P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1944-03.pdf">On highly composite and similar numbers</a>, Trans. Amer. Math. Soc., 56 (1944), 448-469.
%H A128701 Jeffrey C. Lagarias, <a href="https://arxiv.org/abs/math/0008177">An Elementary Problem Equivalent to the Riemann Hypothesis</a>, arXiv:math/0008177 [math.NT], 2000-2001.
%H A128701 Jeffrey C. Lagarias, <a href="http://www.jstor.org/stable/2695443">An elementary problem equivalent to the Riemann hypothesis</a>, American Mathematical Monthly 109 (2002), pp. 534-543.
%H A128701 Wikipedia, <a href="http://en.wikipedia.org/wiki/Highly_abundant_number">Highly Abundant Numbers</a>.
%F A128701 The highly abundant numbers (A002093) are those values of n for which sigma(n)>sigma(m) for all m<n, where sigma(n)= A000203(n).
%e A128701 As 10 is the third highly abundant number that cannot be expressed as a product of consecutive primes with nonincreasing exponents, then a(3)=10.
%t A128701 hadata1=FoldList[Max,1,Table[DivisorSigma[1,n],{n,2,10000}]]; data1=Flatten[Position[hadata1,#,1,1]&/@Union[hadata1]];primefactorlist[1]={1};primefactorlist[k_]:=First[Transpose[FactorInteger[k]]];exponentlist[1]={1};exponentlist[k_]:=Last[Transpose[FactorInteger[k]]];g[k_List]:=If[MemberQ[Table[k[[i]]<= k[[i-1]],{i,1,Length[k]}],False],False,True];h[k_]:=If[primefactorlist[k]==(Prime[ # ]&/@Range[Length[primefactorlist[k]]]),True,False];Select[data1,Or[ ! h[ # ],!g[exponentlist[ # ]]]&]
%t A128701 seq = {1}; sm = 0; Do[f = FactorInteger[n]; p = f[[;; , 1]]; e = f[[;; , 2]]; s = Times @@ ((p^(e + 1) - 1)/(p - 1)); If[s > sm, sm = s; m = Length[p]; If[p[[-1]] != Prime[m] || (m > 1 && ! AllTrue[Differences[e], # <= 0 &]), AppendTo[seq, n]]], {n, 2, 10^4}]; seq (* _Amiram Eldar_, Jun 18 2019 *)
%Y A128701 Cf. A002093, A004394, A000203, A004490, A002182, A002201, A128699, A128700, A128702.
%K A128701 nonn
%O A128701 1,2
%A A128701 _Ant King_, Mar 28 2007