A128718 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k UU's (doublerises) (n >= 1; 0 <= k <= n-1).
1, 1, 2, 1, 5, 4, 1, 9, 18, 8, 1, 14, 50, 56, 16, 1, 20, 110, 220, 160, 32, 1, 27, 210, 645, 840, 432, 64, 1, 35, 364, 1575, 3150, 2912, 1120, 128, 1, 44, 588, 3388, 9534, 13552, 9408, 2816, 256, 1, 54, 900, 6636, 24822, 49644, 53088, 28800, 6912, 512, 1, 65, 1320, 12090, 57750, 153426, 231000, 193440, 84480, 16640, 1024
Offset: 1
Examples
T(3,2)=4 because we have UUUDDD, UUUDLD, UUUDDL and UUUDLL. Triangle starts: 1; 1, 2; 1, 5, 4; 1, 9, 18, 8; 1, 14, 50, 56, 16;
Links
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
Programs
-
Maple
T:=proc(n,k) if k=0 then 1 else binomial(n,k)*sum(binomial(k,j)*binomial(n-k+j,j+1),j=0..k)/n fi end: for n from 1 to 11 do seq(T(n,k),k=0..n-1) od; # yields sequence in triangular form
-
Mathematica
m = 12; G[_] = 0; Do[G[z_] = 1 + t z G[z]^2 + z G[z] - t z + O[z]^m, {m}]; CoefficientList[#, t]& /@ CoefficientList[G[z], z] // Rest // Flatten (* Jean-François Alcover, Nov 15 2019 *)
Comments