A128719 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k UUU's (triplerises) (n >= 0; 0 <= k <= n-2 for n >= 2).
1, 1, 3, 6, 4, 16, 12, 8, 40, 53, 28, 16, 109, 176, 162, 64, 32, 297, 625, 633, 456, 144, 64, 836, 2084, 2677, 2024, 1216, 320, 128, 2377, 7016, 10257, 9849, 6008, 3120, 704, 256, 6869, 23218, 39378, 42222, 32930, 16928, 7776, 1536, 512, 20042, 76811, 146191
Offset: 0
Examples
T(3,1)=4 because we have UUUDDD, UUUDLD, UUUDDL and UUUDLL. Triangle starts: 1; 1; 3; 6, 4; 16, 12, 8; 40, 53, 28, 16;
Links
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
Programs
-
Maple
eq:=z*(t+z-t*z)*G^2-(1-z-z^2+t*z^2)*G+1-t*z=0: G:=RootOf(eq,G): Gser:=simplify(series(G,z=0,14)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) od: 1; 1; for n from 2 to 11 do seq(coeff(P[n],t,j),j=0..n-2) od; # yields sequence in triangular form
Comments