cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128720 Number of paths in the first quadrant from (0,0) to (n,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0).

This page as a plain text file.
%I A128720 #79 Jan 06 2025 13:48:03
%S A128720 1,1,3,6,16,40,109,297,836,2377,6869,20042,59071,175453,524881,
%T A128720 1579752,4780656,14536878,44394980,136107872,418757483,1292505121,
%U A128720 4001039563,12418772656,38641790001,120510911885,376628460529,1179376013552,3699860515924,11626784875214
%N A128720 Number of paths in the first quadrant from (0,0) to (n,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0).
%C A128720 Points of two kinds are placed on a line: light points having weight 1 and heavy points having weight 2. Number of configurations of points of total weight n, with some of the light points being paired off by nonintersecting arcs.
%C A128720 Number of skew Dyck paths of semilength n having no UUU's. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps. Example: a(3)=6 because we have UDUDUD, UDUUDD, UDUUDL, UUDDUD, UUDUDD and UUDUDL. a(n)=A128719(n,0). a(n)=A059397(n,n). a(n)=A132276(n,0).
%C A128720 Hankel transform is the (1,3) Somos-4 sequence A174168. - _Paul Barry_, Mar 10 2010
%C A128720 First column of the Riordan matrix A132276. - _Emanuele Munarini_, May 05 2011
%H A128720 G. C. Greubel, <a href="/A128720/b128720.txt">Table of n, a(n) for n = 0..1000</a> (first 101 terms from Vincenzo Librandi)
%H A128720 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry1/barry95r.html">Generalized Catalan Numbers, Hankel Transforms and Somos-4 Sequences </a>, J. Int. Seq. 13 (2010) #10.7.2.
%H A128720 Paul Barry, <a href="http://arxiv.org/abs/1107.5490">Invariant number triangles, eigentriangles and Somos-4 sequences</a>, arXiv:1107.5490 [math.CO], 2011.
%H A128720 Paul Barry, <a href="https://arxiv.org/abs/1910.00875">Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials</a>, arXiv:1910.00875 [math.CO], 2019.
%H A128720 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Barry/barry601.html">On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
%H A128720 Emeric Deutsch, Emanuele Munarini, and S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
%H A128720 M. Dziemianczuk, <a href="http://dx.doi.org/10.1016/j.disc.2014.07.024">Enumerations of plane trees with multiple edges and Raney lattice paths</a>, Discrete Mathematics 337 (2014): 9-24.
%H A128720 W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/35-4/klostermeyer.pdf">A Pascal rhombus</a>, Fibonacci Quarterly, 35 (1997), 318-328.
%H A128720 P. Rajkovic, Paul Barry, and N. Savic, <a href="http://www.math.bas.bg/infres/MathBalk/MB-26/MB-26-219-228.pdf">Number Sequences in an Integral Form with a Generalized Convolution Property and Somos-4 Hankel Determinants</a>, Math. Balkanica, Vol. 26 (2012), Fasc. 1-2.
%F A128720 a(n) = Sum_{j=0..floor(n/2)} binomial(n-j, j)*m(n-2j), where m(k)=A001006(k) are the Motzkin numbers.
%F A128720 G.f. = G satisfies z^2*G^2 - (1-z-z^2)*G + 1 = 0.
%F A128720 G.f. = c(z^2/(1-z-z^2)^2)/(1-z-z^2), where c(z) = (1-sqrt(1-4z))/(2z) is the Catalan function.
%F A128720 a(n) = a(n-1) + a(n-2) + Sum_{j=0..n-2} a(j)*a(n-2-j), a(0) = a(1) = 1.
%F A128720 G.f.: (1/(1-x-x^2))*c(x^2/(1-x-x^2)^2) = (1/(1-x^2))*m(x/(1-x^2)), c(x) the g.f. of A000108, m(x) the g.f. of A001006. - _Paul Barry_, Mar 18 2010
%F A128720 Let A(x) be the g.f., then B(x) = 1 + x*A(x) = 1 + 1*x + 1*x^2 + 3*x^3 + 6*x^4 + ... = 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1+x-x^2) (continued fraction); more generally B(x)=C(x/(1+x-x^2)) where C(x) is the g.f. for the Catalan numbers (A000108). - _Joerg Arndt_, Mar 18 2011
%F A128720 a(n) = Sum_{k=0..floor(n/2)} (binomial(2*k,k)/(k+1))*Sum_{j=0..floor(n/2)} binomial(n-j, 2*k)*binomial(n-j-2*k, j). - _Emanuele Munarini_, May 05 2011
%F A128720 D-finite with recurrence: (n+2)*a(n) + (-2*n-1)*a(n-1) + 5*(-n+1)*a(n-2) + (2*n-5)*a(n-3) + (n-4)*a(n-4) = 0. - _R. J. Mathar_, Dec 03 2012
%F A128720 G.f.: (1 - x - x^2 - sqrt(1 - 2*x - 5*x^2 + 2*x^3 + x^4))/(2*x^2) = 1/Q(0), where Q(k) = 1 - x - x^2 - x^2/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Oct 04 2013
%F A128720 a(n) ~ sqrt(78+22*sqrt(13)) * ((3+sqrt(13))/2)^n / (4 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Feb 13 2014
%e A128720 a(3)=6 because we have hhh, hH, Hh, hUD, UhD and UDh.
%e A128720 G.f. = 1 + x + 3*x^2 + 6*x^3 + 16*x^4 + 40*x^5 + 109*x^6 + 297*x^7 + ...
%p A128720 a[0]:=1: a[1]:=1: for n from 2 to 30 do a[n]:=a[n-1]+a[n-2]+add(a[j]*a[n-2-j], j=0..n-2) end do: seq(a[n],n=0..30); G:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: Gser:=series(G,z=0,33): seq(coeff(Gser,z,n),n=0..30);
%t A128720 Table[Sum[Binomial[2k,k]/(k+1)Sum[Binomial[n-j,2k]Binomial[n-j-2k,j],{j,0,n/2}],{k,0,n/2}],{n,0,12}] (* _Emanuele Munarini_, May 05 2011 *)
%o A128720 (Maxima) makelist(sum(binomial(2*k,k)/(k+1)*sum(binomial(n-j,2*k)*binomial(n-j-2*k,j),j,0,n/2),k,0,n/2),n,0,12); /* _Emanuele Munarini_, May 05 2011 */
%Y A128720 Cf. A001006, A128719, A059397, A132276.
%K A128720 nonn
%O A128720 0,3
%A A128720 _Emeric Deutsch_, Mar 30 2007, revised Sep 03 2007