cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128721 Number of UUU's in all skew Dyck paths of semilength n.

This page as a plain text file.
%I A128721 #18 Jul 23 2017 03:03:05
%S A128721 0,0,0,4,28,157,820,4155,20742,102725,506504,2491230,12236520,
%T A128721 60063399,294748884,1446436680,7099442700,34855583275,171187439920,
%U A128721 841084246980,4134129246180,20328683526575,100003531112300,492153054177155
%N A128721 Number of UUU's in all skew Dyck paths of semilength n.
%C A128721 A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps.
%H A128721 Vincenzo Librandi, <a href="/A128721/b128721.txt">Table of n, a(n) for n = 0..300</a>
%H A128721 E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
%F A128721 a(n) = Sum_{k=0..n-2} k*A128719(n,k) (n >= 2).
%F A128721 G.f.: (2zg - g + 1 - z + z^2)/(2zg + z - 1), where g = 1 + zg^2 + z(g-1) = (1 - z - sqrt(1 - 6z + 5z^2))/(2z).
%F A128721 Recurrence: 2*(n+1)*(121*n-348)*a(n) = (1663*n^2 - 4620*n + 1392)*a(n-1) - (2476*n^2 - 11133*n + 11787)*a(n-2) + 5*(n-4)*(211*n-537)*a(n-3). - _Vaclav Kotesovec_, Nov 19 2012
%F A128721 a(n) ~ 9*5^(n-3/2)/(2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Nov 19 2012
%e A128721 a(3)=4 because each of the paths UUUDDD, UUUDLD, UUUDDL and UUUDLL contains one UUU, while the other six paths of semilength 3 contain no UUU's.
%p A128721 G:=(1-5*z+4*z^2-2*z^3-(1-2*z)*sqrt(1-6*z+5*z^2))/2/z/sqrt(1-6*z+5*z^2): Gser:=series(G,z=0,28): seq(coeff(Gser,z,n),n=0..25);
%t A128721 CoefficientList[Series[(2*x*(1-x-Sqrt[1-6*x+5*x^2])/(2*x)-(1-x-Sqrt[1-6*x+5*x^2])/(2*x)+1-x+x^2)/(2*x*(1-x-Sqrt[1-6*x+5*x^2])/(2*x)+x-1), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Nov 19 2012 *)
%Y A128721 Cf. A128719.
%K A128721 nonn
%O A128721 0,4
%A A128721 _Emeric Deutsch_, Mar 30 2007