This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128721 #18 Jul 23 2017 03:03:05 %S A128721 0,0,0,4,28,157,820,4155,20742,102725,506504,2491230,12236520, %T A128721 60063399,294748884,1446436680,7099442700,34855583275,171187439920, %U A128721 841084246980,4134129246180,20328683526575,100003531112300,492153054177155 %N A128721 Number of UUU's in all skew Dyck paths of semilength n. %C A128721 A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps. %H A128721 Vincenzo Librandi, <a href="/A128721/b128721.txt">Table of n, a(n) for n = 0..300</a> %H A128721 E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203 %F A128721 a(n) = Sum_{k=0..n-2} k*A128719(n,k) (n >= 2). %F A128721 G.f.: (2zg - g + 1 - z + z^2)/(2zg + z - 1), where g = 1 + zg^2 + z(g-1) = (1 - z - sqrt(1 - 6z + 5z^2))/(2z). %F A128721 Recurrence: 2*(n+1)*(121*n-348)*a(n) = (1663*n^2 - 4620*n + 1392)*a(n-1) - (2476*n^2 - 11133*n + 11787)*a(n-2) + 5*(n-4)*(211*n-537)*a(n-3). - _Vaclav Kotesovec_, Nov 19 2012 %F A128721 a(n) ~ 9*5^(n-3/2)/(2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Nov 19 2012 %e A128721 a(3)=4 because each of the paths UUUDDD, UUUDLD, UUUDDL and UUUDLL contains one UUU, while the other six paths of semilength 3 contain no UUU's. %p A128721 G:=(1-5*z+4*z^2-2*z^3-(1-2*z)*sqrt(1-6*z+5*z^2))/2/z/sqrt(1-6*z+5*z^2): Gser:=series(G,z=0,28): seq(coeff(Gser,z,n),n=0..25); %t A128721 CoefficientList[Series[(2*x*(1-x-Sqrt[1-6*x+5*x^2])/(2*x)-(1-x-Sqrt[1-6*x+5*x^2])/(2*x)+1-x+x^2)/(2*x*(1-x-Sqrt[1-6*x+5*x^2])/(2*x)+x-1), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Nov 19 2012 *) %Y A128721 Cf. A128719. %K A128721 nonn %O A128721 0,4 %A A128721 _Emeric Deutsch_, Mar 30 2007