A128722 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k hills (i.e., peaks at level 1) (0 <= k <= n).
1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 22, 9, 4, 0, 1, 84, 35, 12, 5, 0, 1, 334, 138, 49, 15, 6, 0, 1, 1368, 563, 198, 64, 18, 7, 0, 1, 5734, 2352, 825, 264, 80, 21, 8, 0, 1, 24480, 10015, 3504, 1121, 336, 97, 24, 9, 0, 1, 106086, 43308, 15123, 4833, 1452, 414, 115, 27, 10, 0, 1
Offset: 0
Examples
T(3,1)=3 because we have (UD)UUDD, (UD)UUDL and UUDD(UD) (the hills are shown between parentheses). Triangle starts: 1; 0, 1; 2, 0, 1; 6, 3, 0, 1; 22, 9, 4, 0, 1; 84, 35, 12, 5, 0, 1;
Links
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
Programs
-
Maple
g:=(1-z-sqrt(1-6*z+5*z^2))/2/z: G:=(1-z+z*g)/(1+z-z*g-t*z): Gser:=simplify(series(G,z=0,14)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
Formula
G.f.: (1-z+zg)/(1+z-zg-tz), where g = 1+zg^2+z(g-1) = (1-z-sqrt(1-6z+5z^2))/(2z).
Comments