A128729 Number of skew Dyck paths of semilength n with no UDL's.
1, 1, 2, 6, 20, 71, 262, 994, 3852, 15183, 60686, 245412, 1002344, 4129012, 17135432, 71575350, 300690836, 1269662127, 5385593406, 22938095326, 98059308676, 420610907183, 1809690341366, 7808145901068, 33776362530776
Offset: 0
Keywords
Examples
a(2)=2 because we have UDUD and UUDD (UUDL does not qualify).
Links
- E. Deutsch, E. Munarini, and S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
- Helmut Prodinger, Skew Dyck paths without up-down-left, arXiv:2203.10516 [math.CO], 2022.
Crossrefs
Cf. A128728.
Programs
-
Maple
eq:=z^2*G^3-z*(2-z)*G^2+(1-z^2)*G-1+z+z^2=0: G:=RootOf(eq,G): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..27);
Formula
a(n) = A128728(n,0).
G.f.: G = G(z) satisfies z^2*G^3 - z(2-z)G^2 + (1 - z^2)G - 1 + z + z^2 = 0.
D-finite with recurrence 4*n*(n+1)*a(n) -32*n*(n-1)*a(n-1) +3*(23*n^2-78*n+59)*a(n-2) -2*(n-3)*(10*n-47)*a(n-3) -44*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 22 2022
Comments