cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128730 Number of UDL's in all skew Dyck paths of semilength n.

This page as a plain text file.
%I A128730 #24 Sep 20 2024 05:43:09
%S A128730 0,0,1,4,16,68,301,1366,6301,29400,138355,655424,3121438,14930540,
%T A128730 71675839,345148892,1666432816,8064278288,39103576699,189949958332,
%U A128730 924163714216,4502711570988,21966152501239,107284324830302
%N A128730 Number of UDL's in all skew Dyck paths of semilength n.
%C A128730 A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of steps in it.
%H A128730 G. C. Greubel, <a href="/A128730/b128730.txt">Table of n, a(n) for n = 0..1000</a>
%H A128730 E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
%F A128730 a(n) = Sum_{k>=0} k*A128728(n,k).
%F A128730 G.f.: 2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)).
%F A128730 a(n) ~ 5^(n-1/2)/(6*sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 20 2014
%F A128730 D-finite with recurrence: +2*(n-1)*(3*n-8)*a(n) +(-39*n^2+161*n-148)*a(n-1) +(48*n^2-215*n+220)*a(n-2) -5*(3*n-5)*(n-3)*a(n-3)=0. - _R. J. Mathar_, Jun 17 2016
%F A128730 For n >= 2, a(n) = Sum_{k=1..n-1} binomial(n,k)*A014300(k). - _Jianing Song_, Apr 20 2019
%e A128730 a(3) = 4 because we have UDUUDL, UUUDLD, UUDUDL and UUUDLL (the other six skew Dyck paths of semilength 3 are the five Dyck paths and UUUDDL).
%p A128730 G:=2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..26);
%t A128730 CoefficientList[Series[2*x^2/(1-6*x+5*x^2+(1+x)*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%o A128730 (PARI) z='z+O('z^50); concat([0,0], Vec(2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)))) \\ _G. C. Greubel_, Mar 19 2017
%Y A128730 Cf. A128728, A014300.
%K A128730 nonn
%O A128730 0,4
%A A128730 _Emeric Deutsch_, Mar 31 2007