A128728 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k UDL's (n >= 0; 0 <= k <= floor((n+1)/2)).
1, 1, 2, 1, 6, 4, 20, 16, 71, 64, 2, 262, 261, 20, 994, 1084, 141, 3852, 4572, 854, 7, 15183, 19520, 4772, 112, 60686, 84139, 25416, 1128, 245412, 365404, 131270, 9120, 30, 1002344, 1596420, 664004, 64790, 660, 4129012, 7008544, 3309336, 422928
Offset: 0
Examples
T(3,1)=4 because we have UDUUDL, UUUDLD, UUDUDL and UUUDLL. Triangle starts: 1; 1; 2, 1; 6, 4; 20, 16; 71, 64, 2; 262, 261, 20;
Links
- E. Deutsch, E. Munarini, and S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
- Helmut Prodinger, Skew Dyck paths without up-down-left, arXiv:2203.10516 [math.CO], 2022.
- Yuxuan Zhang and Yan Zhuang, A subfamily of skew Dyck paths related to k-ary trees, arXiv:2306.15778 [math.CO], 2023.
Programs
-
Maple
eq:=z^2*G^3-z*(2-z)*G^2+(1-z^2)*G-1+z+z^2-t*z^2=0: G:=RootOf(eq,G): Gser:=simplify(series(G,z=0,17)): for n from 0 to 14 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 14 do seq(coeff(P[n],t,j),j=0..floor((n+1)/3)) od; # yields sequence in triangular form
Formula
G.f.: G = G(t,z) satisfies z^2*G^3 - z(2-z)G^2 + (1-z^2)G - 1 + z + z^2 - tz^2 = 0.
Comments