cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128743 Number of UU's (i.e., doublerises) in all skew Dyck paths of semilength n.

This page as a plain text file.
%I A128743 #22 Dec 26 2017 03:22:47
%S A128743 0,0,2,13,69,346,1700,8286,40264,195488,949302,4613025,22436997,
%T A128743 109240038,532410060,2597468685,12684628125,62002335160,303332650190,
%U A128743 1485213237135,7277719953415,35687662907750,175120787451540
%N A128743 Number of UU's (i.e., doublerises) in all skew Dyck paths of semilength n.
%C A128743 A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1) (left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps.
%H A128743 G. C. Greubel, <a href="/A128743/b128743.txt">Table of n, a(n) for n = 0..1000</a>
%H A128743 E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
%F A128743 a(n) = Sum_{k=0..n-1} k*A128718(n,k).
%F A128743 G.f.: (1-4*z+z^2+(z-1)*sqrt(1-6*z+5*z^2))/(2*z*sqrt(1-6*z+5*z^2)).
%F A128743 a(n) ~ 3*5^(n-1/2)/(2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 20 2014
%F A128743 Conjecture: (n+1)*(n-2)^2*a(n) -(n-1)*(6*n^2-15*n+4)*a(n-1) +5*(n-2)*(n-1)^2*a(n-2)=0. - _R. J. Mathar_, Jun 17 2016
%F A128743 Conjecture verified using the differential equation 4*g(z)+(20*z^3+2*z^2-2*z)*g'(z)+(25*z^4-15*z^3)*g''(z)+(5*z^5-6*z^4+z^3)*g'''(z)=0 satisfied by the G.f. - _Robert Israel_, Dec 25 2017
%e A128743 a(2)=2 because the paths of semilength 2 are UDUD, UUDD and UUDL, having altogether 2 UU's.
%p A128743 G:=(1-4*z+z^2+(z-1)*sqrt(1-6*z+5*z^2))/2/z/sqrt(1-6*z+5*z^2): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..25);
%t A128743 CoefficientList[Series[(1-4*x+x^2+(x-1)*Sqrt[1-6*x+5*x^2])/2/x/Sqrt[1-6*x+5*x^2], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%o A128743 (PARI) z='z+O('z^50); concat([0,0], Vec((1-4*z+z^2+(z-1)*sqrt(1-6*z+5*z^2))/(2*z*sqrt(1-6*z+5*z^2)))) \\ _G. C. Greubel_, Mar 20 2017
%Y A128743 Cf. A128718.
%K A128743 nonn
%O A128743 0,3
%A A128743 _Emeric Deutsch_, Mar 30 2007