A128744 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having height of the first peak equal to k (1 <= k <= n).
1, 1, 2, 3, 3, 4, 10, 10, 8, 8, 36, 36, 29, 20, 16, 137, 137, 111, 78, 48, 32, 543, 543, 442, 315, 200, 112, 64, 2219, 2219, 1813, 1306, 848, 496, 256, 128, 9285, 9285, 7609, 5527, 3649, 2200, 1200, 576, 256, 39587, 39587, 32521, 23779, 15901, 9802, 5552, 2848
Offset: 1
Examples
T(3,3)=4 because we have UUUDDD, UUUDLD, UUUDDL and UUUDLL. Triangle starts: 1; 1, 2; 3, 3, 4; 10, 10, 8, 8; 36, 36, 29, 20, 16;
Links
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
Programs
-
Maple
g:=(1-z-sqrt(1-6*z+5*z^2))/2/z: G:=t*z*g/(1-t*z-t*z*g): Gser:=simplify(series(G,z=0,15)): for n from 1 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 1 to 11 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form
Comments