cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128746 Height of the last peak summed over all skew Dyck paths of semilength n.

This page as a plain text file.
%I A128746 #17 Mar 22 2017 03:36:28
%S A128746 1,5,22,94,401,1723,7475,32749,144803,645627,2900256,13115820,
%T A128746 59669295,272918415,1254314310,5789850730,26831078075,124785337255,
%U A128746 582247766810,2724905891890,12787603121195,60162698218325,283715348775727
%N A128746 Height of the last peak summed over all skew Dyck paths of semilength n.
%C A128746 A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps.
%H A128746 G. C. Greubel, <a href="/A128746/b128746.txt">Table of n, a(n) for n = 1..1000</a>
%H A128746 E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
%F A128746 a(n) = Sum_{k=1,..,n} A128745(n,k).
%F A128746 G.f.: 2*z*(1+z+sqrt(1-6*z+5*z^2))/(1-3*z+sqrt(1-6*z+5*z^2))^2.
%F A128746 a(n) ~ 5^(n+3/2)/(2*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Mar 20 2014
%F A128746 Conjecture: -(n+2)*(n-1)*a(n) +(6*n^2-3*n+2)*a(n-1) -5*n*(n-2)*a(n-2)=0. - _R. J. Mathar_, Aug 08 2015
%e A128746 a(2)=5 because the skew Dyck paths of semilength 2 are UD(UD), U(UD)D and U(UD)L and their last peaks (shown between parentheses) have heights 1, 2 and 2, respectively.
%p A128746 G:=2*z*(1+z+sqrt(1-6*z+5*z^2))/(1-3*z+sqrt(1-6*z+5*z^2))^2: Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=1..27);
%t A128746 Rest[CoefficientList[Series[2*x*(1+x+Sqrt[1-6*x+5*x^2])/(1-3*x+Sqrt[1-6*x+5*x^2])^2, {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%o A128746 (PARI) z='z+O('z^50); Vec(2*z*(1+z+sqrt(1-6*z+5*z^2))/(1-3*z + sqrt(1-6*z+5*z^2))^2) \\ _G. C. Greubel_, Mar 20 2017
%Y A128746 Cf. A128745.
%K A128746 nonn
%O A128746 1,2
%A A128746 _Emeric Deutsch_, Mar 31 2007