A128747 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k peaks of height >1 (n >= 1; 0 <= k <= n-1).
1, 1, 2, 1, 7, 2, 1, 18, 15, 2, 1, 41, 68, 25, 2, 1, 88, 244, 171, 37, 2, 1, 183, 765, 866, 351, 51, 2, 1, 374, 2199, 3651, 2355, 636, 67, 2, 1, 757, 5954, 13601, 12708, 5421, 1058, 85, 2, 1, 1524, 15438, 46355, 58977, 36198, 11116, 1653, 105, 2, 1, 3059, 38747, 147768
Offset: 1
Examples
T(3,1)=7 because we have UDU(UD)D, UDU(UD)L, U(UD)DUD, UU(UD)DD, UU(UD)LD, UU(UD)DL and UU(UD)LL (the peaks of height >1 are shown between parentheses). Triangle starts: 1; 1, 2; 1, 7, 2; 1, 18, 15, 2; 1, 41, 68, 25, 2;
Links
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
Programs
-
Maple
K:=(1-z*t-sqrt(z^2*t^2-2*z*t+1+4*z^2-4*z))/2/z: G:=z*(2*K-1)/(1-z*K): Gser:=simplify(series(G,z=0,14)): for n from 1 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 1 to 11 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form
Comments