A128749 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n having k ascents of length 1.
1, 0, 1, 2, 0, 1, 4, 5, 0, 1, 14, 12, 9, 0, 1, 44, 53, 25, 14, 0, 1, 150, 196, 132, 44, 20, 0, 1, 520, 777, 555, 269, 70, 27, 0, 1, 1850, 3064, 2486, 1260, 485, 104, 35, 0, 1, 6696, 12233, 10902, 6264, 2496, 804, 147, 44, 0, 1, 24602, 49096, 47955, 30108, 13600
Offset: 0
Examples
T(3,1)=5 because we have (U)DUUDD, (U)DUUDL, UUDD(U)D, UUD(U)DD and UUD(U)DL (the ascents of length 1 are shown between parentheses). Triangle starts: 1; 0, 1; 2, 0, 1; 4, 5, 0, 1; 14, 12, 9, 0, 1; 44, 53, 25, 14, 0, 1;
Links
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
Programs
-
Maple
eq:=z*(1+z-t*z)*G^2-(1-t*z+t*z^2-z^2)*G+1-z=0: G:=RootOf(eq,G): Gser:=simplify(series(G,z=0,15)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
Comments