A128752 Number of ascents of length at least 2 in all skew Dyck paths of semilength n.
0, 0, 2, 9, 41, 189, 880, 4131, 19522, 92763, 442798, 2121795, 10200477, 49176639, 237661176, 1151032005, 5585185425, 27146751885, 132145210270, 644128990155, 3143590707235, 15358979381175, 75117256339240, 367723284610905
Offset: 0
Keywords
Examples
a(2)=2 because we have UUDD and UUDL.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
Crossrefs
Cf. A128751.
Programs
-
Maple
G:=(1/2)*(1-2*z)*sqrt((1-z)/(1-5*z))-1/2: Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..27);
-
Mathematica
CoefficientList[Series[1/2*(1-2*x)*Sqrt[(1-x)/(1-5*x)]-1/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 20 2012 *)
Formula
a(n) = Sum_{k>=0} k*A128751(n,k).
G.f.: (1/2)(1-2z)sqrt((1-z)/(1-5z)) - 1/2.
Recurrence: n*(3*n-1)*a(n) = 18*(n-1)*n*a(n-1) - 5*(n-3)*(3*n+2)*a(n-2). - Vaclav Kotesovec, Nov 20 2012
a(n) ~ 3*5^(n-3/2)/sqrt(Pi*n). - Vaclav Kotesovec, Nov 20 2012
Comments