This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128780 #10 Mar 29 2017 19:44:18 %S A128780 1,2,9,14,189,204,230,320,680,765,1080,1190,1359,1364,1500,1764,1850, %T A128780 2049,2115,2360,2379,2919,3050,3110,3179,3579,3794,4164,4215,4470, %U A128780 5355,5619,5630,5664,5810,5889,5979,6035,6150,6269,6824,6960,7275,8045,8259 %N A128780 Numbers n such that n^k+(n+1)^k is prime for k = 1, 2, 4. %C A128780 n^k+(n+1)^k is prime only for k = power of 2. %C A128780 There are 1242 terms < 10^6. %C A128780 All terms > 2 are congruent to 0 or 4 (mod 5). - _Robert Israel_, Mar 29 2017 %H A128780 Robert Israel, <a href="/A128780/b128780.txt">Table of n, a(n) for n = 1..10000</a> %e A128780 {2+1, 2^2+3^2,2^4+3^4} = {3,13,97} all prime, %e A128780 {9+10, 9^2+10^2,9^4+10^4} = {19,181,16561} all prime. %p A128780 select(n -> isprime(2*n+1) and isprime(2*n^2+2*n+1) and isprime(n^4+(n+1)^4), %p A128780 [1,2,seq(seq(5*i+j,j=[0,4]),i=1..10000)]); # _Robert Israel_, Mar 29 2017 %t A128780 pnQ[n_]:=And@@PrimeQ/@(n^{1,2,4}+(n+1)^{1,2,4}); Select[Range[9000], pnQ] (* _Harvey P. Dale_, Apr 06 2011 *) %Y A128780 Subset of A068501. %K A128780 nonn %O A128780 1,2 %A A128780 _Zak Seidov_, Mar 28 2007