A128830 a(n) = the number of positive divisors of n which are coprime to d(n), where d(n) = the number of positive divisors of n.
1, 1, 2, 3, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 4, 5, 2, 1, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 7, 4, 4, 2, 2, 4, 4, 2, 1, 2, 2, 3, 2, 4, 4, 2, 1, 5, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 1, 2, 3, 2, 9, 2, 4, 2, 2, 8
Offset: 1
Keywords
Examples
The 6 positive divisors of 20 are 1,2,4,5,10,20. Of these, only 1 and 5 are coprime to d(20) = 6. So a(20) = 2.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): a:=proc(n) local div,ct,i: div:=divisors(n): ct:=0: for i from 1 to tau(n) do if igcd(div[i],tau(n))=1 then ct:=ct+1 else ct:=ct: fi od: ct; end: seq(a(n),n=1..140); # Emeric Deutsch, Apr 14 2007
-
Mathematica
cpd[n_]:=Module[{ds=DivisorSigma[0,n]},Count[Divisors[n],?(CoprimeQ[ #,ds]&)]]; Array[cpd,110] (* _Harvey P. Dale, Apr 21 2012 *)
Extensions
More terms from Emeric Deutsch, Apr 14 2007