This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128834 #80 Aug 09 2025 07:41:00 %S A128834 0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1, %T A128834 -1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0, %U A128834 -1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1 %N A128834 Periodic sequence 0,1,1,0,-1,-1,... %C A128834 Unsigned version in A011655. %C A128834 This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = 0, z = -1. - _Michael Somos_, Nov 27 2019 %D A128834 Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, NY, 2000, p. 6. %H A128834 Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/17-1/kimberling1.pdf">Strong divisibility sequences and some conjectures</a>, Fib. Quart., 17 (1979), 13-17. %H A128834 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>. %H A128834 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1). %F A128834 a(n+1) = a(n) - a(n-1) for n>=1, with a(0)=0, a(1)=1. %F A128834 G.f.: x * (1 + x) / (1 + x^3). %F A128834 Euler transform of length 6 sequence [1, -1, -1, 0, 0, 1]. - _Michael Somos_, Apr 15 2007 %F A128834 G.f. A(x) satisfies: 0 = f(A(x), A(x^2)) where f(u, v) = v - u^2 + 2*u*v - 2*u^2*v. - _Michael Somos_, Apr 15 2007 %F A128834 G.f. A(x) satisfies: 0 = f(A(x), A(x^3)) where f(u, v) = v - u^3 + 3*u*v - 3*u^3*v. - _Michael Somos_, Apr 15 2007 %F A128834 a(n) = A010892(n-1). - _R. J. Mathar_, Feb 08 2008 %F A128834 a(n) = A010892(n+5). - _Jaume Oliver Lafont_, Dec 05 2008 %F A128834 a(n) is multiplicative with a(3^e) = 0^e, a(p^e) = 1 if p == 1 (mod 3), a(p^e) = (-1)^e if p == 2 (mod 3). - _Michael Somos_, Apr 15 2007 %F A128834 a(n) = 2*sin(n*Pi/3)/sqrt(3). - _Jaume Oliver Lafont_, Dec 05 2008 %F A128834 From _Wolfdieter Lang_, Jul 18 2010: (Start) %F A128834 O.g.f.: x/(1-x+x^2) = x*S(x), with S(x) o.g.f. for Chebyshev S(n,1) = U(n,1/2) = A010892(n). %F A128834 a(n) = S(n-1,1) = U(n-1,1/2) with S(-1,1)=0. (End) %F A128834 a(n) = -hypergeom([-n/2-1, -(n+1)/2], [-n-2], 4). - _Peter Luschny_, Dec 17 2016 %F A128834 a(3*n) = 0, a(6*n + 1) = a(6*n + 2) = 1, a(6*n + 4) = a(6*n + 5) = -1 for all n in Z. - _Michael Somos_, Nov 27 2019 %F A128834 E.g.f.: 2*exp(x/2)*sin(sqrt(3)*x/2)/sqrt(3). - _Stefano Spezia_, Aug 04 2025 %e A128834 G.f. = x + x^2 - x^4 - x^5 + x^7 + x^8 - x^10 - x^11 + x^13 + x^14 - x^16 + ... %t A128834 PadRight[{},120,{0,1,1,0,-1,-1}] (* or *) LinearRecurrence[{1,-1}, {0,1}, 120] (* _Harvey P. Dale_, May 08 2014 *) %t A128834 a[ n_] := (-1)^Quotient[n, 3] Sign[Mod[n, 3]]; (* _Michael Somos_, Apr 26 2015 *) %t A128834 a[ n_] := {1, 1, 0, -1, -1, 0}[[Mod[n, 6, 1]]]; (* _Michael Somos_, Apr 26 2015 *) %o A128834 (PARI) {a(n) = [0, 1, 1, 0, -1, -1][n%6 + 1]}; %o A128834 (Sage) %o A128834 def A128834(): %o A128834 x, y = 0, -1 %o A128834 while True: %o A128834 yield -x %o A128834 x, y = y, -x + y %o A128834 a = A128834(); [next(a) for i in range(40)] # _Peter Luschny_, Jul 11 2013 %o A128834 (Magma) I:=[0,1]; [n le 2 select I[n] else Self(n-1) - Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jan 14 2018 %Y A128834 Differs only by a shift from A010892. %Y A128834 Cf. A123331 (inverse Mobius transf.) %K A128834 sign,mult,easy %O A128834 0,1 %A A128834 _Philippe Deléham_, Apr 13 2007