This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128890 #10 May 22 2019 06:31:31 %S A128890 1,0,1,2,0,1,0,5,0,1,10,0,9,0,1,0,35,0,14,0,1,70,0,84,0,20,0,1,0,294, %T A128890 0,168,0,27,0,1,588,0,840,0,300,0,35,0,1,0,2772,0,1980,0,495,0,44,0,1 %N A128890 Triangle T(n,k) related to walks in the positive quadrant. %H A128890 G. C. Greubel, <a href="/A128890/b128890.txt">Rows n = 0..100 of triangle, flattened</a> %F A128890 T(n,k) = binomial(n, r)*binomial(n+2, s) - binomial(n+2, r+1)*binomial(n, s-1) with r=(n+k)/2 and s=(n-k)/2, if n+k is even otherwise T(n,k)=0. Also T(2*n,0) = A000108(n)*A000108(n+1) = A005568(n). %e A128890 Triangle begins: %e A128890 1; %e A128890 0, 1; %e A128890 2, 0, 1; %e A128890 0, 5, 0, 1; %e A128890 10, 0, 9, 0, 1; %e A128890 0, 35, 0, 14, 0, 1; %e A128890 70, 0, 84, 0, 20, 0, 1; %e A128890 0, 294, 0, 168, 0, 27, 0, 1; %e A128890 588, 0, 840, 0, 300, 0, 35, 0, 1; %e A128890 0, 2772, 0, 1980, 0, 495, 0, 44, 0, 1; %t A128890 T[n_, k_]:= If[k==0 && EvenQ[n], 4*Binomial[n,n/2]*Binomial[n+2,(n+2)/2 ]/((n+2)*(n+4)), If[EvenQ[n+k], Binomial[n, (n+k)/2]*Binomial[n+2, (n - k)/2] - Binomial[n+2, (n+k+2)/2]*Binomial[n, (n-k-2)/2], 0]]; %t A128890 Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten %o A128890 (PARI) { T(n,k) = if(k==0 && n%2==0, 4*binomial(n,n/2)*binomial(n+2, (n+2)/2)/((n+2)*(n+4)), if((n+k)%2==0, binomial(n, (n+k)/2)*binomial(n + 2, (n-k)/2) - binomial(n+2, (n+k+2)/2)*binomial(n, (n-k-2)/2), 0)) }; \\ _G. C. Greubel_, May 20 2019 %o A128890 (Sage) %o A128890 def T(n, k): %o A128890 if (k==0 and n%2==0): return 4*binomial(n,n/2)*binomial(n+2, (n+2)/2)/((n+2)*(n+4)) %o A128890 elif ((n+k)%2==0): return binomial(n, (n+k)/2)*binomial(n + 2, (n-k)/2) - binomial(n+2, (n+k+2)/2)*binomial(n, (n-k-2)/2) %o A128890 else: return 0 %o A128890 [[T(n, k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, May 20 2019 %Y A128890 Cf. A000012, A000096, A052472, A005568, A000356. %K A128890 nonn,tabl %O A128890 0,4 %A A128890 _Philippe Deléham_, Apr 20 2007