cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128894 Triangle read by rows, giving dimensions of exceptional groups with extension to E9 as a non-simple Lie algebra.

This page as a plain text file.
%I A128894 #32 Dec 30 2022 11:10:18
%S A128894 3,8,27,14,77,273,28,300,1925,8918,52,1053,12376,100776,627912,78,
%T A128894 2430,43758,537966,4969107,36685506,133,7371,238602,5248750,85709988,
%U A128894 1101296924,11604306012,190,15504,749360,24732110,605537790,11619550320,181746027600,2386644625950
%N A128894 Triangle read by rows, giving dimensions of exceptional groups with extension to E9 as a non-simple Lie algebra.
%C A128894 Row sums are {3, 35, 364, 11171, 742169, 42238845, 12796807780, ...}.
%H A128894 J. M. Landsberg and L. Manivel, <a href="https://doi.org/10.1016/j.aim.2005.02.001">The sextonions and E7 1/2</a>, Adv. Math. 201 (2006), 143-179. [See Th. 7.1]
%H A128894 J. M. Landsberg and L. Manivel, <a href="https://hal.archives-ouvertes.fr/hal-00330636">The Sextonions and E_{7 1/2}</a>, (see p. 15), HAL Id : hal-00330636.
%H A128894 J. M. Landsberg and L. Manivel, <a href="https://arxiv.org/abs/math/0107032">Triality, exceptional Lie algebras and Deligne dimension formulas</a>, arXiv:math/0107032 [math.AG], 2001. (see page 2)
%F A128894 Let p = {-4/3, -1, -2/3, 0, 1, 2, 4, 6, 8, 16} then g(p,k) = (3*p + 2*k + 5)*binomial(k + 2*p + 3, k)*binomial(k + 5*p/2 + 3, k)*binomial(k + 3*p + 4, k)/((3*p + 5)*binomial(k + p/2 + 1, k)*binomial(k + p + 1, k)); see the Mathematica program.
%e A128894 Triangle begins:
%e A128894    3;
%e A128894    8,   27;
%e A128894   14,   77,   273;
%e A128894   28,  300,  1925,   8918;
%e A128894   52, 1053, 12376, 100776,  627912;
%e A128894   78, 2430, 43758, 537966, 4969107, 36685506; ...
%t A128894 p = {-4/3, -1, -2/3, 0, 1, 2, 4, 6, 8, 16};
%t A128894 g[p_, k_] := (3*p +2*k +5) *Binomial[k+2*p+3, k]*Binomial[k+5*p/2 +3, k]*Binomial[k+3*p+4, k]/((3*p + 5)*Binomial[k+p/2 +1, k]*Binomial[k+p+1, k]);
%t A128894 Table[Table[g[p[[n]], k], {k, 1, n}], {n, 1, Length[p]}]
%Y A128894 Cf. A133238.
%K A128894 nonn,tabl
%O A128894 1,1
%A A128894 _Roger L. Bagula_, May 09 2007