This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128915 #18 Feb 16 2025 08:33:05 %S A128915 1,1,1,0,1,1,0,1,1,1,0,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,2,1,2, %T A128915 1,1,0,1,1,0,1,1,1,1,2,2,2,2,2,1,2,1,1,1,1,0,1,1,1,1,2,2,3,2,3,2,3,2, %U A128915 3,2,2,1,1,0,1,1,0,1,1,1,1,2,2,3,3,3,3,4,3,4,4,4,3,3,2,2,2,1,1 %N A128915 Triangle read by rows: row n gives coefficients (lowest degree first) of P_n(x), where P_0(x) = P_1(x) = 1; P_n(x) = P_{n-1}(x) + x^n*P_{n-2}(x). %C A128915 P_n(x) appears to have degree A035106(n). %H A128915 Seiichi Manyama, <a href="/A128915/b128915.txt">Table of n, a(n) for n = 0..9523 (rows n=0..47 of triangle, flattened).</a> %H A128915 A. V. Sills, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v10i1r13">Finite Rogers-Ramanujan type identities</a>, Electron. J. Combin. 10 (2003), Research Paper 13, 122 pp. See Identity 3-14, p. 25. %H A128915 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rogers-RamanujanContinuedFraction.html">Rogers-Ramanujan Continued Fraction</a> %e A128915 Triangle begins: %e A128915 1 %e A128915 1 %e A128915 1,0,1 %e A128915 1,0,1,1 %e A128915 1,0,1,1,1,0,1 %e A128915 1,0,1,1,1,1,1,1,1 %e A128915 1,0,1,1,1,1,2,1,2,1,1,0,1 %e A128915 1,0,1,1,1,1,2,2,2,2,2,1,2,1,1,1 %e A128915 1,0,1,1,1,1,2,2,3,2,3,2,3,2,3,2,2,1,1,0,1 %p A128915 P[0]:=1; P[1]:=1; d:=[0,0]; M:=14; for n from 2 to M do P[n]:=expand(P[n-1]+q^n*P[n-2]); %p A128915 lprint(seriestolist(series(P[n],q,M^2))); d:=[op(d),degree(P[n],q)]; od: d; %Y A128915 Rows converge to A003114 (coefficients in expansion of the first Rogers-Ramanujan identities). Cf. A119469. %Y A128915 Rows converge to A003106. Cf. A127836, A119469. %K A128915 nonn,tabf %O A128915 0,32 %A A128915 _N. J. A. Sloane_, Apr 24 2007