cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128917 Pentagonal numbers (A000326) which are also centered pentagonal numbers (A005891).

This page as a plain text file.
%I A128917 #38 Sep 20 2024 05:43:25
%S A128917 1,51,3151,195301,12105501,750345751,46509331051,2882828179401,
%T A128917 178688837791801,11075825114912251,686522468286767751,
%U A128917 42553317208664688301,2637619144468923906901,163489833639864617539551,10133732066527137363545251,628127898291042651922266001
%N A128917 Pentagonal numbers (A000326) which are also centered pentagonal numbers (A005891).
%H A128917 Colin Barker, <a href="/A128917/b128917.txt">Table of n, a(n) for n = 1..558</a>
%H A128917 S. C. Schlicker, <a href="http://www.jstor.org/stable/10.4169/math.mag.84.5.339">Numbers Simultaneously Polygonal and Centered Polygonal</a>, Mathematics Magazine,  Vol. 84, No. 5, December 2011
%H A128917 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (63,-63,1).
%F A128917 Define x(n) + y(n)*sqrt(15) = (5+sqrt(15))*(4+sqrt(15))^n, s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+5*(s(n)^2-s(n))).
%F A128917 From _Richard Choulet_, Sep 19 2007: (Start)
%F A128917 We must solve 3*p^2-p=5*r^2+5*r+2, which gives X^2=15*Y^2+10 where X=6*p-1 and Y=2*r+1.
%F A128917 Four other sequences are obtained at the same time:
%F A128917 X is given by 5,35,275,2165,... with the recurrence a(n+2)=8*a(n+1)-a(n) and also a(n+1)=4*a(n)+(15*a(n)^2-150)^(1/2) (numbers such that 15*X^2-150 is a square).
%F A128917 Y is given by 1,9,71,559,... with the recurrence a(n+2)=8*a(n+1)-a(n) and also a(n+1)=4*a(n)+(15*a(n)^2+10)^(1/2) (numbers such that 15*Y^2+10 is a square).
%F A128917 p is given by 1,6,46,361,... with the recurrence a(n+2)=8*a(n+1)-a(n)-1 and also a(n+1)=4*a(n)-0.5+0.5*(60*a(n)^2-20*a(n)-15)^(1/2) (numbers such that 15*(6*p-1)^2-150 is a square).
%F A128917 r is given by 0,4,35,279,... with the recurrence a(n+2)=8*a(n+1)-a(n)+3 and also a(n+1)=4*a(n)+1.5+0.5*(60*a(n)^2+60*a(n)+25)^(1/2) (numbers such that 15*(2*r+1)^2+10 is a square).
%F A128917 a(n+2) = 62*a(n+1)-a(n)-10, a(n+1)=31*a(n)-5+(960*a(n)^2-320*a(n)-45)^(1/2).
%F A128917 G.f.: z*(1-12*z+z^2)/((1-z)*(1-62*z+z^2)). (End)
%F A128917 a(n) = 63*a(n-1)-63*a(n-2)+a(n-3). - _Colin Barker_, Jan 07 2015
%e A128917 a(1)=51 because 51 is the fifth centered pentagonal number and the sixth pentagonal number.
%p A128917 CP := n -> 1+1/2*5*(n^2-n): N:=10: u:=4: v:=1: x:=5: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+15*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp;
%t A128917 LinearRecurrence[{63,-63,1},{1,51,3151},20] (* _Harvey P. Dale_, Nov 26 2022 *)
%o A128917 (PARI) Vec(-x*(x^2-12*x+1)/((x-1)*(x^2-62*x+1)) + O(x^100)) \\ _Colin Barker_, Jan 07 2015
%Y A128917 Cf. A000326, A005891, A128917, A253654.
%K A128917 easy,nonn
%O A128917 1,2
%A A128917 _Steven Schlicker_, Apr 24 2007
%E A128917 Edited by _N. J. A. Sloane_, Sep 25 2007
%E A128917 More terms from _R. J. Mathar_, Oct 31 2007