cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128924 T(n,m) is the number of m's in the fundamental period of Fibonacci numbers mod n.

This page as a plain text file.
%I A128924 #20 Aug 24 2023 07:21:20
%S A128924 1,1,2,2,3,3,1,3,1,1,4,4,4,4,4,2,6,3,4,3,6,2,4,2,1,1,2,4,2,3,2,1,0,3,
%T A128924 0,1,2,5,2,2,2,2,2,2,5,4,8,4,8,4,8,4,8,4,8,1,3,2,1,0,1,0,0,1,0,1,2,5,
%U A128924 2,2,1,5,0,1,1,2,2,1,4,4,2,2,0,4,0,0,4,0,2,2,4,2,8,2,2,1,4,4,4,4,4,1,2,2,8
%N A128924 T(n,m) is the number of m's in the fundamental period of Fibonacci numbers mod n.
%C A128924 T(n,m) is the triangle read by rows, 0<=m<n.
%C A128924 A118965 and A066853 give numbers of zeros and nonzeros in n-th row, respectively. - _Reinhard Zumkeller_, Jan 16 2014
%H A128924 Reinhard Zumkeller, <a href="/A128924/b128924.txt">Rows n = 1..125 of triangle, flattened</a>
%H A128924 G. Darvasi and St. Eckmann, <a href="https://eudml.org/doc/141577">Zur Verteilung der Reste der Fibonacci-Folge modulo 5c</a>, Elemente der Mathematik 50 (1995) pp. 76-80.
%F A128924 T(n,n) = A235715(n). - _Reinhard Zumkeller_, Jan 17 2014
%e A128924 {F(k) mod 4} has fundamental period (0,1,1,2,3,1), see A079343, with
%e A128924 T(4,0)=1 zero, T(4,1)=3 ones, T(4,2)=1 two's, T(4,3)=1 three's. The triangle starts
%e A128924 1,
%e A128924 1, 2,
%e A128924 2, 3, 3,
%e A128924 1, 3, 1, 1,
%e A128924 4, 4, 4, 4, 4,
%e A128924 2, 6, 3, 4, 3, 6,
%e A128924 2, 4, 2, 1, 1, 2, 4,
%e A128924 2, 3, 2, 1, 0, 3, 0, 1,
%e A128924 2, 5, 2, 2, 2, 2, 2, 2, 5,
%e A128924 4, 8, 4, 8, 4, 8, 4, 8, 4, 8,
%e A128924 1, 3, 2, 1, 0, 1, 0, 0, 1, 0, 1,
%e A128924 2, 5, 2, 2, 1, 5, 0, 1, 1, 2, 2, 1,
%e A128924 4, 4, 2, 2, 0, 4, 0, 0, 4, 0, 2, 2, 4,
%e A128924 2, 8, 2, 2, 1, 4, 4, 4, 4, 4, 1, 2, 2, 8,
%e A128924 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3,
%e A128924 2, 3, 4, 1, 0, 3, 0, 1, 2, 3, 0, 1, 0, 3, 0, 1,
%e A128924 4, 4, 2, 2, 4, 2, 0, 0, 2, 2, 0, 0, 2, 4, 2, 2, 4,
%p A128924 A128924 := proc(m,h)
%p A128924     local resul,k,M ;
%p A128924     resul :=0 ;
%p A128924     for k from 0 to A001175(m)-1 do
%p A128924         M := combinat[fibonacci](k) mod m ;
%p A128924         if M = h then
%p A128924             resul := resul+1 ;
%p A128924         end if ;
%p A128924     end do;
%p A128924     resul ;
%p A128924 end proc:
%p A128924 seq(seq(A128924(m,h),h=0..m-1),m=1..17) ;
%t A128924 A001175[1] = 1; A001175[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[Fibonacci[k+1], n] == 1, Return[k]]]; T[m_, h_] := Module[{resul, k, M}, resul = 0; For[k = 0, k <= A001175[m]-1, k++, M = Mod[Fibonacci[k], m]; If[ M == h, resul++]]; Return[resul]]; Table[T[m, h], {m, 1, 17}, {h, 0, m-1}] // Flatten (* _Jean-François Alcover_, Feb 11 2015, after Maple code *)
%o A128924 (Haskell)
%o A128924 import Data.List (group, sort)
%o A128924 a128924 n k = a128924_tabl !! (n-1) !! (k-1)
%o A128924 a128924_tabl = map a128924_row [1..]
%o A128924 a128924_row 1 = [1]
%o A128924 a128924_row n = f [0..n-1] $ group $ sort $ g 1 ps where
%o A128924    f []     _                            = []
%o A128924    f (v:vs) wss'@(ws:wss) | head ws == v = length ws : f vs wss
%o A128924                           | otherwise    = 0 : f vs wss'
%o A128924    g 0 (1 : xs) = []
%o A128924    g _ (x : xs) = x : g x xs
%o A128924    ps = 1 : 1 : zipWith (\u v -> (u + v) `mod` n) (tail ps) ps
%o A128924 -- _Reinhard Zumkeller_, Jan 16 2014
%Y A128924 Cf. A053029, A053030, A053031, A001175 (row sums), A001176 (1st column).
%K A128924 nonn,tabl
%O A128924 1,3
%A A128924 _R. J. Mathar_, Apr 25 2007