cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128928 Smallest member p of a triple of primes (p,p+8,p+20).

Original entry on oeis.org

3, 11, 23, 53, 59, 89, 131, 173, 191, 263, 359, 389, 401, 479, 593, 599, 653, 719, 1013, 1031, 1109, 1193, 1229, 1283, 1439, 1451, 1523, 1559, 1601, 1733, 1979, 2273, 2531, 2663, 2699, 2711, 3041, 3209, 3251, 3299, 3323, 3449, 3491, 3539, 3623, 3719, 3911, 3923, 4091, 4211
Offset: 1

Views

Author

J. M. Bergot, Apr 25 2007

Keywords

Comments

A subsequence of A023202. The definition implies that the sum of the first two primes, 2(p+4), divides the sum of the product of the first two primes and the last, p(p+8)+p+20=(p+4)(p+5). This feature is shared with A022005 and common to prime triples of the format (p,p+2*a,p+a+a^2) with even a. - R. J. Mathar, Apr 26 2007

Crossrefs

Cf. A022005.

Programs

  • Maple
    isA128928 := proc(n) isprime(n) and isprime(n+8) and isprime(n+20) ; end: for n from 1 to 300 do if isA128928(ithprime(n)) then printf("%d,",ithprime(n)) ; fi ; od ; # R. J. Mathar, Apr 26 2007
  • Mathematica
    kmax = 580; Select[ Prime[ Range[1, kmax] ], (PrimeQ[ # + 8] && PrimeQ[ # + 20])& ] (* Stuart Clary *)

Extensions

Corrected and extended by Robert G. Wilson v, R. J. Mathar and Stuart Clary, Apr 26 2007