cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128960 a(n) = (n^3 - n)*2^n.

This page as a plain text file.
%I A128960 #30 Oct 02 2022 10:32:37
%S A128960 0,24,192,960,3840,13440,43008,129024,368640,1013760,2703360,7028736,
%T A128960 17891328,44728320,110100480,267386880,641728512,1524105216,
%U A128960 3586129920,8367636480,19377684480,44568674304,101871255552,231525580800,523449139200,1177760563200,2638183661568
%N A128960 a(n) = (n^3 - n)*2^n.
%H A128960 Vincenzo Librandi, <a href="/A128960/b128960.txt">Table of n, a(n) for n = 1..1000</a>
%H A128960 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-24,32,-16).
%F A128960 G.f.: 24*x^2/(1-2*x)^4. - _Vincenzo Librandi_, Feb 12 2013
%F A128960 a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4). - _Vincenzo Librandi_, Feb 12 2013
%F A128960 From _Amiram Eldar_, Oct 02 2022: (Start)
%F A128960 a(n) = A007531(n+1)*A000079(n).
%F A128960 Sum_{n>=2} 1/a(n) = (2*log(2)-1)/8.
%F A128960 Sum_{n>=2} (-1)^n/a(n) = (3/2)^2*log(3/2) - 7/8. (End)
%t A128960 CoefficientList[Series[24 x/(1 - 2 x)^4, {x, 0, 30}], x] (* or *) LinearRecurrence[{8, -24, 32, -16}, {0, 24, 192, 960}, 30] (* _Vincenzo Librandi_, Feb 12 2013 *)
%o A128960 (Magma) [(n^3-n)*2^n: n in [1..25]]; /* or */ I:=[0,24,192,960]; [n le 4 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..25]]; // _Vincenzo Librandi_, Feb 12 2013
%o A128960 (PARI) a(n)=(n^3-n)<<n \\ _Charles R Greathouse IV_, Oct 07 2015
%Y A128960 Cf. A000079, A007531, A036289, A128796.
%Y A128960 Cf. A128961, A128962, A128963, A128964, A128965, A128967, A128969.
%K A128960 nonn,easy
%O A128960 1,2
%A A128960 _Mohammad K. Azarian_, Apr 28 2007
%E A128960 Offset corrected by _Mohammad K. Azarian_, Nov 19 2008