cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129010 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+833)^2 = y^2.

This page as a plain text file.
%I A129010 #3 Feb 15 2020 10:52:27
%S A129010 0,124,168,187,343,399,595,624,915,952,1260,1372,1768,1827,1975,2499,
%T A129010 3135,3367,3468,4312,4620,5712,5875,7524,7735,9499,10143,12427,12768,
%U A129010 13624,16660,20352,21700,22287,27195,28987,35343,36292,45895,47124
%N A129010 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+833)^2 = y^2.
%C A129010 Also values x of Pythagorean triples (x, x+833, y); 833=7^2*17.
%C A129010 Corresponding values y of solutions (x, y) are in A156835.
%C A129010 lim_{n -> infinity} a(n)/a(n-15) = 3+2*sqrt(2).
%C A129010 lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^2*((19+6*sqrt(2))/17)/(3+2*sqrt(2)) for n mod 15 = {1, 2, 5, 7, 11, 13}.
%C A129010 lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/(((9+4*sqrt(2))/7)*((19+6*sqrt(2))/17)^2) for n mod 15 = {0, 3, 6, 12}.
%C A129010 lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*((19+6*sqrt(2))/17)/((9+4*sqrt(2))/7)^3 for n mod 15 = {4, 8, 10, 14}.
%C A129010 lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^4/((3+2*sqrt(2))*((19+6*sqrt(2))/17)^2) for n mod 15 = 9.
%F A129010 a(n) = 6*a(n-15)-a(n-30)+1666 for n > 30; a(1) = 0, a(2) = 124, a(3) = 168, a(4) = 187, a(5) = 343, a(6) = 399, a(7) = 595, a(8) = 624, a(9) = 915, a(10) = 952, a(11) = 1260, a(12) = 1372, a(13) = 1768, a(14) = 1827, a(15) = 1975, a(16) = 2499, a(17) = 3135, a(18) = 3367, a(19) = 3468, a(20) = 4312, a(21) = 4620, a(22) = 5712, a(23) = 5875, a(24) = 7524, a(25) = 7735, a(26) = 9499, a(27) = 10143, a(28) = 12427, a(29) = 12768, a(30) = 13624.
%F A129010 G.f.: x*(124+44*x+19*x^2+156*x^3+56*x^4+196*x^5+29*x^6+291*x^7+37*x^8+308*x^9+112*x^10+396*x^11+59*x^12+148*x^13+524*x^14-108*x^15-32*x^16-13*x^17-92*x^18-28*x^19-84*x^20-11*x^21-97*x^22-11*x^23-84*x^24-28*x^25-92*x^26-13*x^27-32*x^28-108*x^29)/((1-x)*(1-6*x^15+x^30)).
%e A129010 124^2+(124+833)^2 = 15376+915849 = 931225 = 965^2.
%o A129010 (PARI) {forstep(n=0, 50000, [3, 1], if(issquare(2*n^2+1666*n+693889), print1(n, ",")))}
%Y A129010 Cf. A156835, A076296, A118120, A118554, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7), A156163 (decimal expansion of (19+6*sqrt(2))/17).
%K A129010 nonn
%O A129010 1,2
%A A129010 _Mohamed Bouhamida_, May 27 2007
%E A129010 Edited by Klaus Brockhaus, Feb 16 2009