cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129126 Ninth diagonal of table A060850 counting partitions into parts of k kinds.

This page as a plain text file.
%I A129126 #23 Mar 03 2024 14:36:03
%S A129126 22,185,810,2580,6765,15525,32305,62337,113265,195910,325193,521235,
%T A129126 810654,1228080,1817910,2636326,3753600,5256711,7252300,9869990,
%U A129126 13266099,17627775,23177583,30178575,38939875,49822812,63247635
%N A129126 Ninth diagonal of table A060850 counting partitions into parts of k kinds.
%C A129126 A slightly different method of calculating this sequence is described in A128627.
%H A129126 Alois P. Heinz, <a href="/A129126/b129126.txt">Table of n, a(n) for n = 1..1000</a>
%H A129126 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
%F A129126 From _Alois P. Heinz_, Oct 17 2008: (Start)
%F A129126 G.f.: x*(x-2)*(2*x^5-14*x^4+35*x^3-32*x^2-x+11)/(x-1)^9.
%F A129126 a(n) = n*(n+6)*(n+3)*(n+1)*(4200+(9994+(1571+(74+n)*n)*n)*n)/40320. (End)
%e A129126 From A128629 we can construct the table below:
%e A129126       Deg    #  Associated sequence
%e A129126   -------  ---  -------------------
%e A129126         8    1    1  1   2   3    4
%e A129126        44    2    3  1   3   6   10
%e A129126        53   11    4  1   4   9   16
%e A129126        62   11    4  1   4   9   16
%e A129126        71   11    4  1   4   9   16
%e A129126       332   12    6  1   6  18   40
%e A129126       422   12    6  1   6  18   40
%e A129126       431  111    8  1   8  27   64
%e A129126       521  111    8  1   8  27   64
%e A129126       611   12    6  1   6  18   40
%e A129126      2222    4    7  1   5  15   35
%e A129126      3221  112   12  1  12  54  160
%e A129126      3311   22    9  1   9  36  100
%e A129126      4211  112   12  1  12  54  160
%e A129126      5111   13   10  1   8  30   80
%e A129126     22211   23   15  1  12  60  200
%e A129126     32111  113   20  1  16  90  320
%e A129126     41111   14   14  1  10  45  140
%e A129126    221111   24   21  1  15  90  350
%e A129126    311111   15   22  1  12  63  224
%e A129126   1111111    8   19  1   9  45  165
%e A129126   2111111   16   26  1  14  84  336
%e A129126   -------  ---   -- -- --- --- ----
%e A129126               Sums: 22 185 810 2580 ...
%p A129126 with (numtheory): b:=proc(n) option remember; local d, j; `if` (n=0, 1, add (add (d, d=divisors(j)) *b(n-j), j=1..n)/n) end: A:= proc (n) option remember; local k; `if` (n=0, x, expand (add (b(k-1) *A(n-k) *x^(k-1), k=1..n))) end: a:= n-> coeftayl (A(n+8), x=0, 9): seq(a(n), n=1..40); # _Alois P. Heinz_, Oct 16 2008
%p A129126 # second Maple program:
%p A129126 a:= n-> n*(n+6)*(n+3)*(n+1)*(4200+(9994+(1571+(74+n)*n)*n)*n)/40320:
%p A129126 seq(a(n), n=1..40);  # _Alois P. Heinz_, Oct 17 2008
%t A129126 LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {22, 185, 810, 2580, 6765, 15525, 32305, 62337, 113265}, 30] (* _Jean-François Alcover_, Mar 07 2021 *)
%Y A129126 Cf. A000041, A000712, A000716, A023003, A060850, A128627, A128629.
%K A129126 nonn,uned
%O A129126 1,1
%A A129126 _Alford Arnold_, Apr 03 2007
%E A129126 More terms from _Alois P. Heinz_, Oct 16 2008