This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129136 #25 Jul 06 2023 05:27:15 %S A129136 1,0,28,168,1890,20328,244860,3181464,44543499,668147480,10690367688, %T A129136 181736238320,3271252308324,62153793831024,1243075876659240, %U A129136 26104593409789776,574301055015449685,13208924265355241808 %N A129136 Permutations with exactly 6 fixed points. %H A129136 Vincenzo Librandi, <a href="/A129136/b129136.txt">Table of n, a(n) for n = 6..200</a> %H A129136 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/St000022">The number of fixed points of a permutation</a> %H A129136 <a href="/index/Per#IntegerPermutationCatAuto">Index entries for sequences related to permutations with fixed points</a> %F A129136 a(n) = A008290(n,6). %F A129136 E.g.f.: exp(-x)/(1-x)*(x^6/6!). [_Zerinvary Lajos_, Apr 03 2009] %F A129136 O.g.f.: (1/6!)*Sum_{k>=6} k!*x^k/(1 + x)^(k+1). - _Ilya Gutkovskiy_, Apr 15 2017 %F A129136 D-finite with recurrence +(-n+6)*a(n) +n*(n-7)*a(n-1) +n*(n-1)*a(n-2)=0. - _R. J. Mathar_, Jul 06 2023 %p A129136 a:=n->sum(n!*sum((-1)^k/(k-5)!, j=0..n), k=5..n): seq(-a(n)/6!, n=5..24); %p A129136 restart: G(x):=exp(-x)/(1-x)*(x^6/6!): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=6..23); # _Zerinvary Lajos_, Apr 03 2009 %t A129136 With[{nn=40}, Drop[CoefficientList[Series[Exp[-x]/(1 - x) x^6/6!, {x, 0, nn}], x]Range[0, nn]!, 6]] (* _Vincenzo Librandi_, Feb 19 2014 *) %o A129136 (PARI) x='x+O('x^66); Vec( serlaplace(exp(-x)/(1-x)*(x^6/6!)) ) \\ _Joerg Arndt_, Feb 19 2014 %Y A129136 Cf. A008290, A008291, A170942. %K A129136 nonn %O A129136 6,3 %A A129136 _Zerinvary Lajos_, May 25 2007 %E A129136 Changed offset from 0 to 6 by _Vincenzo Librandi_, Feb 19 2014 %E A129136 Edited by _Joerg Arndt_, Feb 19 2014