cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129147 Expansion of c(x(1+2x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 4, 13, 52, 214, 928, 4141, 18940, 88258, 417616, 2001058, 9690184, 47348812, 233158144, 1155900541, 5764510060, 28898899594, 145556001136, 736206912982, 3737768204344, 19042072755124, 97313398530496, 498737257238482, 2562773039735896, 13200732624526804, 68148459129343648
Offset: 0

Views

Author

Paul Barry, Apr 01 2007

Keywords

Comments

Hankel transform of a(n) is A047656(n+1)=3^C(n+1,2). In general, the Hankel transform of the expansion of c(x(1+r*x)) is (r+1)^C(n+1,2).
Number of paths weakly above X-axis from (0,0) to (0,2n) using steps (1,1), (1,-1) and two colors of (3,1). - David Scambler, Jun 21 2013

References

  • Barry, Paul; Hennessy, Aoife Four-term recurrences, orthogonal polynomials and Riordan arrays. J. Integer Seq. 15 (2012), no. 4, Article 12.4.2, 19 pp.

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x*(1+2*x)])/(2*x*(1+2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
  • PARI
    x='x+O('x^66);
    C(x)=(1-sqrt(1-4*x))/(2*x);
    Vec(C(x*(1+2*x))) \\ Joerg Arndt, May 15 2013

Formula

a(n)=sum{k=0..n, C(k,n-k)*2^(n-k)*C(k)};
a(n)=(1/(2*pi))*int(x^n*sqrt(8+4x-x^2)/(x+2),x,2-2*sqrt(3),2+2*sqrt(3));
Conjecture: (n+1)*a(n) +2*(2-n)*a(n-1) +4*(5-4n)*a(n-2) +16*(2-n)*a(n-3)=0. - R. J. Mathar, Dec 14 2011
G.f.: Q(0), where Q(k)= 1 + (4*k+1)*x*(1+2*x)/(k + 1 - x*(1+2*x)*(2*k+2)*(4*k+3)/(2*x*(1+2*x)*(4*k+3) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
a(n) ~ sqrt(3-sqrt(3)) * (2*(1+sqrt(3)))^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014