A129147 Expansion of c(x(1+2x)), c(x) the g.f. of A000108.
1, 1, 4, 13, 52, 214, 928, 4141, 18940, 88258, 417616, 2001058, 9690184, 47348812, 233158144, 1155900541, 5764510060, 28898899594, 145556001136, 736206912982, 3737768204344, 19042072755124, 97313398530496, 498737257238482, 2562773039735896, 13200732624526804, 68148459129343648
Offset: 0
References
- Barry, Paul; Hennessy, Aoife Four-term recurrences, orthogonal polynomials and Riordan arrays. J. Integer Seq. 15 (2012), no. 4, Article 12.4.2, 19 pp.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
CoefficientList[Series[(1-Sqrt[1-4*x*(1+2*x)])/(2*x*(1+2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
-
PARI
x='x+O('x^66); C(x)=(1-sqrt(1-4*x))/(2*x); Vec(C(x*(1+2*x))) \\ Joerg Arndt, May 15 2013
Formula
a(n)=sum{k=0..n, C(k,n-k)*2^(n-k)*C(k)};
a(n)=(1/(2*pi))*int(x^n*sqrt(8+4x-x^2)/(x+2),x,2-2*sqrt(3),2+2*sqrt(3));
Conjecture: (n+1)*a(n) +2*(2-n)*a(n-1) +4*(5-4n)*a(n-2) +16*(2-n)*a(n-3)=0. - R. J. Mathar, Dec 14 2011
G.f.: Q(0), where Q(k)= 1 + (4*k+1)*x*(1+2*x)/(k + 1 - x*(1+2*x)*(2*k+2)*(4*k+3)/(2*x*(1+2*x)*(4*k+3) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
a(n) ~ sqrt(3-sqrt(3)) * (2*(1+sqrt(3)))^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
Comments