This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129152 #13 Nov 29 2019 20:52:06 %S A129152 15625,18750,34375,37500,87500,187500,475000,1212500,2437500,6362500, %T A129152 12737500,25487500,50987500,101987500,206975000,530037500,1060087500, %U A129152 3890025000,15175012500,45525375000,177026512500,596222100000,2708984250000,12765250350000 %N A129152 The n-th arithmetic derivative of 5^6. %C A129152 In general, the trajectory of p^(p+1) under A003415 is equal to p^p times the trajectory of p under A129283: n -> n + n'. Here we have the case p = 5 (see A129286 for a(n)/5^5), see A129150 and A129151 for p = 2 and 3. - _M. F. Hasler_, Nov 28 2019 %F A129152 a(n+1) = A003415(a(n)), a(0) = 5^6 = 15625. %F A129152 a(n) = A129286(n)*5^5; A129251(a(n)) > 0. - _Reinhard Zumkeller_, Apr 07 2007 %t A129152 dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; s = 5^6; Join[{s}, Table[s = dn[s], {18}]] (* _T. D. Noe_, Mar 07 2013 *) %o A129152 (Haskell) %o A129152 a129152 n = a129152_list !! n %o A129152 a129152_list = iterate a003415 15625 -- _Reinhard Zumkeller_, Apr 29 2012 %o A129152 (PARI) A129152_upto(N)=vector(N,n,N=if(n>1,A003415(N),5^6)) \\ gives a(0..N-1). To get a(1..N) put A003415() around if() instead inside. _M. F. Hasler_, Nov 28 2019 %Y A129152 Cf. A129150, A129151, A068327. %Y A129152 Cf. A099309, A051674, A100716. %K A129152 nonn %O A129152 0,1 %A A129152 _Reinhard Zumkeller_, Apr 01 2007