cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129156 Number of primitive Dyck factors in all skew Dyck paths of semilength n.

This page as a plain text file.
%I A129156 #13 Feb 10 2017 01:11:35
%S A129156 0,1,3,10,36,136,532,2139,8796,36859,156946,677514,2959669,13063493,
%T A129156 58184838,261230814,1181144792,5374078726,24588562675,113067256235,
%U A129156 522270436044,2422244159067,11275548912967,52663412854571
%N A129156 Number of primitive Dyck factors in all skew Dyck paths of semilength n.
%C A129156 A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. A primitive Dyck factor is a subpath of the form UPD that starts on the x-axis, P being a Dyck path.
%H A129156 G. C. Greubel, <a href="/A129156/b129156.txt">Table of n, a(n) for n = 0..1000</a>
%H A129156 E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
%F A129156 a(n) = Sum_{k=0,..,n} k*A129154(n,k).
%F A129156 a(n) = A128742(n) - A129158(n).
%F A129156 G.f.: (3-3*z-sqrt(1-6*z+5*z^2))*(1-sqrt(1-4*z))/(1 +z + sqrt(1 - 6*z + 5*z^2))^2.
%F A129156 a(n) ~ (5-sqrt(5)) * 5^(n+3/2) / (36*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Mar 20 2014
%e A129156 a(2)=3 because in all skew Dyck paths of semilength 3, namely (UD)(UD), (UUDD) and UUDL, we have altogether 3 primitive Dyck factors (shown between parentheses).
%p A129156 G:=(3-3*z-sqrt(1-6*z+5*z^2))*(1-sqrt(1-4*z))/(1+z+sqrt(1-6*z+5*z^2))^2: Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..27);
%t A129156 CoefficientList[Series[(3-3*x-Sqrt[1-6*x+5*x^2])*(1-Sqrt[1-4*x])/ (1+x+Sqrt[1-6*x+5*x^2])^2, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%o A129156 (PARI) z='z+O('z^25); concat([0], Vec((3-3*z-sqrt(1-6*z+5*z^2))*(1-sqrt(1-4*z))/(1 +z + sqrt(1 - 6*z + 5*z^2))^2)) \\ _G. C. Greubel_, Feb 09 2017
%Y A129156 Cf. A129154, A129157, A129158.
%K A129156 nonn
%O A129156 0,3
%A A129156 _Emeric Deutsch_, Apr 02 2007