A129157 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k primitive non-Dyck factors (n>=0; 0<=k<=floor((n+1)/3)).
1, 1, 2, 1, 5, 5, 14, 22, 42, 94, 1, 132, 400, 11, 429, 1709, 81, 1430, 7351, 503, 1, 4862, 31857, 2851, 17, 16796, 139100, 15297, 176, 58786, 611781, 79228, 1440, 1, 208012, 2709230, 400694, 10259, 23, 742900, 12075248, 1993226, 66774, 307, 2674440
Offset: 0
Examples
T(3,1) = 5 because we have UD(UUDL), (UUUDLD), (UUDUDL), (UUUDDL) and (UUUDLL); T(5,2) = 1 because we have (UUUDLD)(UUDL) (the primitive non-Dyck factors are shown between parentheses). Triangle starts: 1; 1; 2, 1; 5, 5; 14, 22; 42, 94, 1; 132, 400, 11;
Links
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2192-2203
Programs
-
Maple
G:=(2+t-3*t*z-t*sqrt(1-6*z+5*z^2))/(1+t*z+(1-t)*sqrt(1-4*z)+t*sqrt(1-6*z+5*z^2)): Gser:=simplify(series(G,z=0,18)): for n from 0 to 15 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 15 do seq(coeff(P[n],t,j),j=0..floor((n+1)/3)) od; # yields sequence in triangular form
Formula
G.f.: G(t,z) = [1+tz(g-1)]/[1-tz(g-C)-zC], where g=1+zg^2+z(g-1) = [1-z-sqrt(1- 6z+5z^2)]/(2z) and C=1+zC^2=[1-sqrt(1-4z)]/(2z) is the Catalan function.
Row n has 1+floor((n+1)/3) terms (n>=1).
Row sums yield A002212.
T(n,0) = binomial(2*n,n)/(n+1) = A000108(n) (the Catalan numbers).
Sum_{k>=0} k*T(n,k) = A129158(n).
Comments