cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129157 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k primitive non-Dyck factors (n>=0; 0<=k<=floor((n+1)/3)).

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 14, 22, 42, 94, 1, 132, 400, 11, 429, 1709, 81, 1430, 7351, 503, 1, 4862, 31857, 2851, 17, 16796, 139100, 15297, 176, 58786, 611781, 79228, 1440, 1, 208012, 2709230, 400694, 10259, 23, 742900, 12075248, 1993226, 66774, 307, 2674440
Offset: 0

Views

Author

Emeric Deutsch, Apr 02 2007

Keywords

Comments

A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. A primitive non-Dyck factor is a subpath of the form UPD, P being a skew Dyck path with at least one L step, or of the form UPL, P being any nonempty skew Dyck path.

Examples

			T(3,1) = 5 because we have UD(UUDL), (UUUDLD), (UUDUDL), (UUUDDL) and (UUUDLL);
T(5,2) = 1 because we have (UUUDLD)(UUDL) (the primitive non-Dyck factors are shown between parentheses).
Triangle starts:
    1;
    1;
    2,   1;
    5,   5;
   14,  22;
   42,  94,  1;
  132, 400, 11;
		

Crossrefs

Programs

  • Maple
    G:=(2+t-3*t*z-t*sqrt(1-6*z+5*z^2))/(1+t*z+(1-t)*sqrt(1-4*z)+t*sqrt(1-6*z+5*z^2)):
    Gser:=simplify(series(G,z=0,18)):
    for n from 0 to 15 do P[n]:=sort(coeff(Gser,z,n)) od:
    for n from 0 to 15 do seq(coeff(P[n],t,j),j=0..floor((n+1)/3)) od;
    # yields sequence in triangular form

Formula

G.f.: G(t,z) = [1+tz(g-1)]/[1-tz(g-C)-zC], where g=1+zg^2+z(g-1) = [1-z-sqrt(1- 6z+5z^2)]/(2z) and C=1+zC^2=[1-sqrt(1-4z)]/(2z) is the Catalan function.
Row n has 1+floor((n+1)/3) terms (n>=1).
Row sums yield A002212.
T(n,0) = binomial(2*n,n)/(n+1) = A000108(n) (the Catalan numbers).
Sum_{k>=0} k*T(n,k) = A129158(n).