A129159 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having abscissa of the first return to the x-axis equal to 2k (1 <= k <= n).
1, 2, 1, 4, 4, 2, 11, 9, 11, 5, 37, 21, 31, 34, 14, 138, 59, 76, 116, 112, 42, 544, 198, 198, 315, 448, 384, 132, 2220, 743, 599, 825, 1358, 1758, 1353, 429, 9286, 2964, 2091, 2345, 3724, 5922, 6963, 4862, 1430, 39588, 12251, 8026, 7604, 10388, 17304, 25872
Offset: 1
Examples
T(3,2)=4 because we have UUDDUD, UUUDLD, UUDUDL and UUUDDL. Triangle starts: 1; 2, 1; 4, 4, 2; 11, 9, 11, 5; 37, 21, 31, 34, 14;
Links
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
Programs
-
Maple
g:=(1-z-sqrt(1-6*z+5*z^2))/2/z: h:=(1-z-sqrt(z^2-2*z+1+4*t*z^2-4*t*z))/2/t/z: G:=t*z*h*g+z*(h-1): Gser:=simplify(series(G,z=0,14)): for n from 1 to 11 do P[n]:=sort(expand(coeff(Gser,z,n))) od: for n from 1 to 11 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form
Comments