cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129164 Sum of pyramid weights in all skew Dyck paths of semilength n.

This page as a plain text file.
%I A129164 #40 Oct 14 2016 07:41:37
%S A129164 1,5,22,97,436,1994,9241,43257,204052,968440,4619011,22120630,
%T A129164 106300507,512321437,2475395302,11986728457,58156146652,282640193312,
%U A129164 1375737276787,6705522150972,32724071280517,159878425878847,781910419686412,3827639591654862,18753350784435811
%N A129164 Sum of pyramid weights in all skew Dyck paths of semilength n.
%C A129164 A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. A pyramid in a skew Dyck word (path) is a factor of the form U^h D^h, h being the height of the pyramid. A pyramid in a skew Dyck word w is maximal if, as a factor in w, it is not immediately preceded by a U and immediately followed by a D. The pyramid weight of a skew Dyck path (word) is the sum of the heights of its maximal pyramids.
%H A129164 Vincenzo Librandi, <a href="/A129164/b129164.txt">Table of n, a(n) for n = 1..200</a>
%H A129164 A. Denise and R. Simion, <a href="http://dx.doi.org/10.1016/0012-365X(93)E0147-V">Two combinatorial statistics on Dyck paths</a>, Discrete Math., 137, 1995, 155-176.
%H A129164 E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
%F A129164 a(n) = Sum_{k=1..n} k*A129163(n,k).
%F A129164 Partial sums of A026378.
%F A129164 G.f. = [1/sqrt(1-6*z+5*z^2)-1/(1-z)]/2.
%F A129164 a(n) = n*Sum_(m=1..n, Sum_(k=m..n,(binomial(-m+2*k-1,k-1)*binomial(n-1,k-1))/k)). - _Vladimir Kruchinin_, Oct 07 2011
%F A129164 Recurrence: n*a(n) = (7*n-4)*a(n-1) - (11*n-14)*a(n-2) + 5*(n-2)*a(n-3). - _Vaclav Kotesovec_, Oct 20 2012
%F A129164 a(n) ~ 5^(n+1/2)/(4*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 20 2012
%F A129164 a(n) = n*hypergeometric([1, 3/2, 1-n], [2, 2], -4). - _Peter Luschny_, Sep 16 2014
%F A129164 a(n) = Sum_{k=1..n} (binomial(n,k)*binomial(2*k,k))/2. - _Vladimir Kruchinin_, Oct 11 2016
%e A129164 a(2)=5 because the pyramid weights of the paths (UD)(UD), (UUDD) and U(UD)L are 2, 2 and 1, respectively (the maximal pyramids are shown between parentheses).
%p A129164 G:=(1/sqrt(1-6*z+5*z^2)-1/(1-z))/2: Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=1..26);
%t A129164 Rest[CoefficientList[Series[(1/Sqrt[1-6*x+5*x^2]-1/(1-x))/2, {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Oct 20 2012 *)
%t A129164 a[n_] := (Hypergeometric2F1[1/2, -n, 1, -4]-1)/2; Array[a, 25] (* _Jean-François Alcover_, Oct 11 2016, after _Vladimir Kruchinin_ *)
%o A129164 (Maxima)
%o A129164 a(n):=n*sum(sum((binomial(-m+2*k-1,k-1)*binomial(n-1,k-1))/k,k,m,n), m,1,n); /* _Vladimir Kruchinin_, Oct 07 2011 */
%o A129164 (Maxima)
%o A129164 a(n):=sum(binomial(n,k)*binomial(2*k,k),k,1,n)/2; /* _Vladimir Kruchinin_, Oct 11 2016 */
%o A129164 (Sage)
%o A129164 A129164 = lambda n: n*hypergeometric([1, 3/2, 1-n], [2, 2], -4)
%o A129164 [simplify(A129164(n)) for n in (1..25)] # _Peter Luschny_, Sep 16 2014
%Y A129164 Cf. A026378, A129163.
%K A129164 nonn
%O A129164 1,2
%A A129164 _Emeric Deutsch_, Apr 03 2007