A129163 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and pyramid weight k.
1, 1, 2, 2, 4, 4, 4, 11, 13, 8, 8, 29, 46, 38, 16, 16, 74, 150, 167, 104, 32, 32, 184, 461, 652, 554, 272, 64, 64, 448, 1354, 2344, 2535, 1724, 688, 128, 128, 1072, 3836, 7922, 10462, 9103, 5112, 1696, 256, 256, 2528, 10552, 25506, 40007, 42547, 30773, 14592
Offset: 1
Examples
T(3,2)=4 because we have (UD)U(UD)L, U(UD)(UD)D, U(UD)(UD)L and U(UUDD)L (the maximal pyramids are shown between parentheses). Triangle starts: 1; 1,2; 2,4,4; 4,11,13,8; 8,29,46,38,16;
Links
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
Programs
-
Maple
eq:=z*(1-t*z)*G^2-(1-2*t*z+t*z^2)*G+(1-z)*(1-t*z)=0: G:=RootOf(eq,G): Gser:=simplify(series(G-1,z=0,15)): for n from 1 to 11 do P[n]:=sort(expand(coeff(Gser,z,n))) od: for n from 1 to 11 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form
Formula
G.f.=G-1, where G=G(t,z) is given by z(1-tz)G^2-(1-2tz+tz^2)G+(1-z)(1-tz)=0.
Comments