A129165 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k base pyramids.
1, 0, 1, 1, 1, 1, 5, 2, 2, 1, 19, 9, 4, 3, 1, 73, 37, 15, 7, 4, 1, 292, 147, 63, 24, 11, 5, 1, 1203, 598, 258, 100, 37, 16, 6, 1, 5065, 2497, 1067, 419, 152, 55, 22, 7, 1, 21697, 10633, 4507, 1762, 647, 224, 79, 29, 8, 1, 94274, 45980, 19379, 7528, 2765, 964, 322
Offset: 0
Examples
T(3,1)=2 because we have (UD)UUDL and (UUUDDD) (the base pyramids are shown between parentheses). Triangle starts: 1; 0, 1; 1, 1, 1; 5, 2, 2, 1; 19, 9, 4, 3, 1;
Links
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
Programs
-
Maple
g:=(1-z-sqrt(1-6*z+5*z^2))/2/z: G:=(1-z)*(1-z+z*g)/(1-z*(1-z)*g-t*z): Gser:=simplify(series(G,z=0,15)): for n from 0 to 11 do P[n]:=sort(expand(coeff(Gser,z,n))) od: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
Comments