cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129167 Number of base pyramids in all skew Dyck paths of semilength n.

This page as a plain text file.
%I A129167 #19 Jul 23 2017 12:15:06
%S A129167 0,1,3,9,30,109,420,1685,6960,29391,126291,550359,2426502,10803801,
%T A129167 48507843,219377949,998436792,4569488371,21016589073,97090411019,
%U A129167 450314942682,2096122733211,9788916220518,45850711498859,215348942668680,1013979873542689,4785437476592805,22633143884165985,107258646298581390
%N A129167 Number of base pyramids in all skew Dyck paths of semilength n.
%C A129167 A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. A pyramid in a skew Dyck word (path) is a factor of the form u^h d^h, h being the height of the pyramid. A base pyramid is a pyramid starting on the x-axis.
%C A129167 a(n) = |A091699(n+1)|. Partial sums of A033321(n), n = 1, 2, 3, ....
%C A129167 a(n+1) is the number of 3-colored Motzkin paths of length n with no peaks at level 1. - _José Luis Ramírez Ramírez_, Mar 31 2013
%H A129167 Vincenzo Librandi, <a href="/A129167/b129167.txt">Table of n, a(n) for n = 0..200</a>
%H A129167 E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
%F A129167 a(n) = Sum_{k=0..n} k*A129165(n,k).
%F A129167 G.f.: (1 - 3*z - sqrt(1 - 6*z + 5*z^2))/(z*(3 - 3*z - sqrt(1 - 6*z + 5*z^2))).
%F A129167 Recurrence: 2*(n+1)*a(n) = (13*n-3)*a(n-1) - 4*(4*n-3)*a(n-2) + 5*(n-1)*a(n-3) . - _Vaclav Kotesovec_, Oct 20 2012
%F A129167 a(n) ~ 5^(n+5/2)/(72*sqrt(Pi)*n^(3/2)) . - _Vaclav Kotesovec_, Oct 20 2012
%e A129167 a(2)=3 because in the paths (UD)(UD), (UUDD) and UUDL we have altogether 3 base pyramids (shown between parentheses).
%p A129167 G:=(1-3*z-sqrt(1-6*z+5*z^2))/z/(3-3*z-sqrt(1-6*z+5*z^2)): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..27);
%t A129167 CoefficientList[Series[(1-3*x-Sqrt[1-6*x+5*x^2])/(x*(3-3*x-Sqrt[1-6*x+5*x^2])), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 20 2012 *)
%o A129167 (PARI) z='z+O('z^66); concat([0], Vec((1-3*z-sqrt(1-6*z+5*z^2))/z/(3-3*z-sqrt(1-6*z+5*z^2)))) \\ _Joerg Arndt_, Aug 27 2014
%Y A129167 Cf. A033321, A091699, A129165.
%K A129167 nonn
%O A129167 0,3
%A A129167 _Emeric Deutsch_, Apr 04 2007