cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129171 Sum of the heights of the peaks in all skew Dyck paths of semilength n.

This page as a plain text file.
%I A129171 #18 Feb 10 2017 01:12:00
%S A129171 0,1,6,32,165,840,4251,21443,107946,542680,2725635,13679997,68623176,
%T A129171 344090307,1724754180,8642952000,43300971885,216895107480,
%U A129171 1086253033035,5439405705125,27234492215400,136345625309965,682531666024170
%N A129171 Sum of the heights of the peaks in all skew Dyck paths of semilength n.
%C A129171 A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and L=(-1,-1) (left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps.
%H A129171 G. C. Greubel and Vincenzo Librandi, <a href="/A129171/b129171.txt">Table of n, a(n) for n = 0..1000</a>(terms 1..300 from Vincenzo Librandi)
%H A129171 E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
%F A129171 a(n) = Sum_{k=0,..,n} k*A129170(n,k).
%F A129171 G.f.: z*(3-3*z-sqrt(1-6*z+5*z^2))/(1-6*z+5*z^2)/2. - corrected by _Vaclav Kotesovec_, Oct 20 2012
%F A129171 Recurrence: (n-1)*a(n) = (11*n-19)*a(n-1) - 5*(7*n-17)*a(n-2) + 25*(n-3)*a(n-3) . - _Vaclav Kotesovec_, Oct 20 2012
%F A129171 a(n) ~ 3*5^(n-1)/2*(1-sqrt(5)/(6*sqrt(Pi*n))) . - _Vaclav Kotesovec_, Oct 20 2012
%e A129171 a(2)=6 because in the 3 skew Dyck paths of semilength 2, namely UDUD, UUDD and UUDL, the heights of the peaks are 1,1,2 and 2.
%p A129171 G:=z*(3-3*z-sqrt(1-6*z+5*z^2))/(1-6*z+5*z^2)/2: Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..27);
%t A129171 CoefficientList[Series[x*(3 - 3*x - Sqrt[1 - 6*x + 5*x^2])/(1 - 6*x + 5*x^2)/2, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 20 2012 *)
%o A129171 (PARI) z='z+O('z^25); concat([0], Vec(z*(3-3*z-sqrt(1-6*z+5*z^2))/(1-6*z+5*z^2)/2)) \\ _G. C. Greubel_, Feb 10 2017
%Y A129171 Cf. A129170.
%K A129171 nonn
%O A129171 0,3
%A A129171 _Emeric Deutsch_, Apr 07 2007