cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129173 Total area below all skew Dyck paths of semilength n.

This page as a plain text file.
%I A129173 #26 Jan 10 2022 10:24:17
%S A129173 0,1,9,58,336,1853,9945,52487,273939,1418567,7303791,37441560,
%T A129173 191287254,974642943,4955123955,25146686730,127424717400,644873878895,
%U A129173 3260055588615,16465301636090,83092583965020,419031686115875
%N A129173 Total area below all skew Dyck paths of semilength n.
%C A129173 A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps.
%H A129173 G. C. Greubel and Vincenzo Librandi, <a href="/A129173/b129173.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..300 from Vincenzo Librandi)
%H A129173 E. Deutsch, E. Munarini and S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
%H A129173 Emeric Deutsch, Emanuele Munarini and Simone Rinaldi, <a href="https://doi.org/10.1016/j.jspi.2009.12.013">Skew Dyck paths, area, and superdiagonal bargraphs</a>, Journal of Statistical Planning and Inference, Vol. 140, Issue 6, June 2010, pp. 1550-1562, Table 1.
%F A129173 a(n) = Sum_{k=0,..,n^2} k*A129172(n,k).
%F A129173 a(n) - 5*a(n-1) = A002212(n) + A002212(n-1).
%F A129173 G.f.: (1+z)*(1-3*z-sqrt(1-6*z+5*z^2))/(2*z*(1-5*z)).
%F A129173 (n+1)(n-2)a(n)-(11n^2-20n-6)a(n-1)+5(7n^2-19n+7)a(n-2)-25(n-1)(n-3)a(n-3) = 0.
%F A129173 a(n) ~ 6*5^(n-1)*(1-sqrt(5)/sqrt(Pi*n)) . - _Vaclav Kotesovec_, Oct 20 2012
%e A129173 a(2)=9 because the areas below the skew Dyck paths UDUD, UUDD and UUDL are 2, 4 and 3, respectively.
%p A129173 a[0]:=1: a[1]:=1: a[2]:=9: for n from 3 to 25 do a[n]:=((11*n^2-20*n-6)*a[n-1]-5*(7*n^2-19*n+7)*a[n-2]+25*(n-1)*(n-3)*a[n-3])/(n+1)/(n-2) od: seq(a[n],n=0..25);
%t A129173 CoefficientList[Series[(1+x)*(1-3*x-Sqrt[1-6*x+5*x^2])/(2*x*(1-5*x)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 20 2012 *)
%o A129173 (PARI) z='z +O('z^25); concat([0], Vec((1+z)*(1-3*z-sqrt(1-6*z+5*z^2))/(2*z*(1-5*z)))) \\ _G. C. Greubel_, Feb 10 2017
%Y A129173 Cf. A002212, A129172.
%K A129173 nonn
%O A129173 0,3
%A A129173 _Emeric Deutsch_, Apr 09 2007