cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129187 Decimal expansion of arcsinh(1/3).

Original entry on oeis.org

3, 2, 7, 4, 5, 0, 1, 5, 0, 2, 3, 7, 2, 5, 8, 4, 4, 3, 3, 2, 2, 5, 3, 5, 2, 5, 9, 9, 8, 8, 2, 5, 8, 1, 2, 7, 7, 0, 0, 5, 2, 4, 5, 2, 8, 9, 9, 0, 7, 6, 7, 4, 5, 1, 2, 7, 5, 6, 2, 9, 5, 1, 5, 4, 2, 7, 1, 7, 6, 5, 6, 2, 9, 4, 9, 3, 2, 7, 2, 1, 4, 1, 1, 9, 8, 2, 4, 7, 7, 3, 0, 6, 3, 2, 3, 1, 9, 5, 5
Offset: 0

Views

Author

N. J. A. Sloane, Jul 27 2008

Keywords

Comments

Archimedes's-like scheme: set p(0) = 1/sqrt(10), q(0) = 1/3; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (arithmetic mean of reciprocals, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018

Examples

			0.32745015023725844332253525998825812770052452899076745127562...
		

Crossrefs

Programs

Formula

Equals log((1 + sqrt(10))/3). - Jianing Song, Jul 12 2018
Equals arccoth(sqrt(10)). - Amiram Eldar, Feb 09 2024