cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129196 a(n) = denominator(3*(3+(-1)^n)/(n+1)^3).

Original entry on oeis.org

1, 4, 9, 32, 125, 36, 343, 256, 243, 500, 1331, 288, 2197, 1372, 1125, 2048, 4913, 972, 6859, 4000, 3087, 5324, 12167, 2304, 15625, 8788, 6561, 10976, 24389, 4500, 29791, 16384, 11979, 19652, 42875, 7776, 50653, 27436, 19773, 32000, 68921, 12348, 79507, 42592
Offset: 0

Views

Author

Paul Barry, Apr 02 2007, Apr 03 2007

Keywords

Comments

Numerator of 3*(3+(-1)^n)/(n+1)^3 is A129197.
(1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*(n+1)*t)*((t-Pi)/i)^3 dt = (A129202(n)*Pi^2-A129203(n))/A129196(n) with i=sqrt(-1).

Crossrefs

Programs

  • Mathematica
    a[n_] := Denominator[3*(3 + (-1)^n)/(n + 1)^3]; Array[a, 50, 0] (* Amiram Eldar, Sep 11 2022 *)

Formula

a(n) = A129204(n+1)/(5/3+(4/3)*cos(2*Pi*(n+1)/3)).
a(n) = denominator((1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*(n+1)*t)*((t-Pi)/i)^3 dt) with i=sqrt(-1).
a(n) = denominator((Pi^2*(n+1)^2-6)/(n+1)^3).
a(n) = ((n+1)^3/(gcd(n+1,2)*gcd(n+1,3))). - Paul Barry, Oct 09 2007
a(n) = numerator of coefficient of x^6 in the Maclaurin expansion of -exp(-(n+1)*x^2). - Francesco Daddi, Aug 04 2011
Sum_{n>=0} 1/a(n) = 29*zeta(3)/24. - Amiram Eldar, Sep 11 2022