This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129210 #12 Apr 01 2025 03:27:38 %S A129210 245,333,330,462,539,647,888,1036,1177,1445,1722,1990,2311,2672,3047, %T A129210 3492,4093,4613,5138,5718,6379,7123,7952,8676,9537,10393,11558,12602, %U A129210 13743,14863,16252,17528,18957,20481,22042,23678,25347,27207,29092 %N A129210 Largest number not the sum of n distinct nonzero squares. %C A129210 Halter-Koch essentially finds (5)-a(12) (with a coprimality condition, but Bateman, Hildebrand, & Purdy show that this can be dropped). - _Charles R Greathouse IV_, Mar 18 2014 %H A129210 T. D. Noe, <a href="/A129210/b129210.txt">Table of n, a(n) for n = 5..400</a> (from Bateman et al.) %H A129210 Paul T. Bateman, Adolf J. Hildebrand, and George B. Purdy, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa67/aa6745.pdf">Sums of distinct squares</a>, Acta Arithmetica 67 (1994), pp. 349-380. %H A129210 Franz Halter-Koch, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa42/aa4212.pdf">Darstellung natürlicher Zahlen als Summe von Quadraten</a>, Acta Arithmetica 42 (1982), pp. 11-20. %F A129210 Bateman, Hildebrand, & Purdy prove that a(n) = n^3/3 + n^2/2 + sqrt(8)*n^(3/2) + O(n^(5/4)), see their Theorem 1. - _Charles R Greathouse IV_, Mar 31 2025 %Y A129210 Cf. A120951 (numbers that are not the sum of 5 distinct nonzero squares). %K A129210 nonn %O A129210 5,1 %A A129210 _T. D. Noe_, Apr 03 2007