cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129225 Residues of the Lucas - Lehmer primality test for M(29) = 536870911.

This page as a plain text file.
%I A129225 #16 Feb 16 2025 08:33:05
%S A129225 4,14,194,37634,342576132,250734296,433300702,16341479,49808751,
%T A129225 57936161,211467447,71320725,91230447,153832672,217471443,239636427,
%U A129225 223645010,90243197,27374393,490737401,35441039,303927542,202574536
%N A129225 Residues of the Lucas - Lehmer primality test for M(29) = 536870911.
%C A129225 Since a(27) > 0, M(29) = 536870911 is composite. Mersenne numbers are only prime if a(p-2) = 0.
%H A129225 Dennis Martin, <a href="/A129225/b129225.txt">Table of n, a(n) for n = 0..27</a>
%H A129225 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Lucas-LehmerTest.html">Lucas Lehmer Test</a>.
%H A129225 Wikipedia, <a href="http://en.wikipedia.org/wiki/Lucas-Lehmer_primality_test">Lucas Lehmer Primality Test</a>.
%F A129225 a(0) = 4, a(n) = a(n-1)^2 - 2 mod 2^p-1, last term: a(p-2).
%e A129225 a(27) = 365171774^2 - 2 mod 536870911 = 458738443.
%t A129225 NestList[Mod[#^2-2, 2^29-1] &, 4, 27] (* _Ben Whitmore_, Dec 28 2024 *)
%Y A129225 Cf. A095847, A003010, A129219, A129220, A129221, A129222, A129223, A129224, A129226, A001348.
%K A129225 fini,nonn,full
%O A129225 0,1
%A A129225 _Sergio Pimentel_, Apr 04 2007