cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A129248 a(n) = n-th prime of class 14- according to the Erdős-Selfridge classification.

Original entry on oeis.org

377982107, 437391349, 716174549, 742922699, 1385934359, 1603768277, 1780127639, 1790436371, 1895437139, 1968261067, 2066951933, 2109424013, 2148523669, 2150787839, 2238778847, 2299583987, 2334899909, 2368121663
Offset: 1

Views

Author

M. F. Hasler, Apr 05 2007, Apr 21 2007

Keywords

Comments

a[1..2] calculated using A081641[1..11]; a[3] <= 716174549.

Crossrefs

Programs

Formula

{ a(n) } = { p = 2*m*A081641(k)+1 | k=1,2,...,oo and m=1,2,... such that p is prime and m has no factor of class > 13- }

A129250 Primes of Erdős-Selfridge class 16-.

Original entry on oeis.org

22111003847, 25782283783, 34824831403, 42970472971, 44905511759, 45490491349, 52486961911, 54560052479, 55437374381, 65803884467, 66333011539
Offset: 1

Views

Author

M. F. Hasler, Apr 21 2007

Keywords

Comments

Knowledge of a(k), k=1..9 allows us to establish A056637(17) = 1 + 2*a(9) = 110874748763.

Crossrefs

Programs

  • PARI
    nextclass( a, s=-1, p, n=[] )={ if( !p, p=nextprime(a[ #a]+1)); print("Computing all primes of next class up to ",2*p-s ); for( i=1,#a, for( k=1,p/a[i], if( is/*pseudo*/prime(2*k*a[i]-s), n=concat(n,2*k*a[i]-s); ) ) ); vecsort(n) }; A129250=nextclass(A129249)

Formula

{ a(n) } = { p=1+2*k*A129249(n); n=1,2,3..., k=1,2,3... such that p is prime and k has no factor of class > 15- }.
Showing 1-2 of 2 results.