This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129308 #84 Jun 09 2025 14:40:44 %S A129308 0,1,0,1,0,2,0,1,0,1,0,3,0,1,0,1,0,2,0,2,0,1,0,3,0,1,0,1,0,3,0,1,0,1, %T A129308 0,3,0,1,0,2,0,3,0,1,0,1,0,3,0,1,0,1,0,2,0,2,0,1,0,5,0,1,0,1,0,2,0,1, %U A129308 0,1,0,4,0,1,0,1,0,2,0,2,0,1,0,4,0,1,0,1,0,4,0,1,0,1,0,3,0,1,0,2,0,2,0,1,0 %N A129308 a(n) is the number of positive integers k such that k*(k+1) divides n. %C A129308 The usual OEIS policy is not to include sequences like this where alternate terms are zero; this is an exception. %C A129308 In other words, a(n) is the number of oblong numbers (A002378) dividing n. - _Bernard Schott_, Jul 29 2022 %H A129308 Ray Chandler, <a href="/A129308/b129308.txt">Table of n, a(n) for n = 1..10000</a> %H A129308 P. Erdős and R. R. Hall, <a href="http://www.renyi.hu/~p_erdos/1978-26.pdf">On some unconventional problems on the divisors of integers</a>, J. Austral. Math. Soc., Ser. A, 25, 479-485 (1978). %H A129308 MathOverflow, <a href="http://mathoverflow.net/questions/207512">On the number of consecutive divisors of an integer</a>. %F A129308 a(2n-1) = 0; a(2n) = A007862(n). - _Ray Chandler_, Jun 24 2008 %F A129308 G.f.: Sum_{n>=1} x^(n*(n+1))/(1-x^(n*(n+1))). - _Joerg Arndt_, Jan 30 2011 [modified by _Ilya Gutkovskiy_, Apr 14 2021] %F A129308 a(n) = A000005(n) - A137921(n), where A137921(n) is the number of maximal runs of successive divisors of n. - _Gus Wiseman_, Oct 15 2019 %F A129308 a(n) = Sum_{d|n} A005369(d). - _Ridouane Oudra_, Jan 22 2021 %F A129308 a(n) = A195155(n)-1. - _Antti Karttunen_, Feb 21 2023 %F A129308 From _Amiram Eldar_, Dec 31 2023: (Start) %F A129308 a(n) = A088722(n) + A059841(n). %F A129308 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. (End) %e A129308 The divisors of 20 are 1,2,4,5,10,20. Of these there are two that are of the form k(k+1): 2 = 1*2 and 20 = 4*5. So a(2) = 2. %t A129308 a = {}; For[n = 1, n < 90, n++, k = 1; co = 0; While[k < Sqrt[n], If[IntegerQ[ n/(k*(k + 1))], co++ ]; k++ ]; AppendTo[a, co]]; a (* _Stefan Steinerberger_, May 27 2007 *) %t A129308 Table[Count[Differences[Divisors[n]],1],{n,30}] (* _Gus Wiseman_, Oct 15 2019 *) %o A129308 (PARI) a(n)=sumdiv(n, d, n%(d+1)==0); \\ _Michel Marcus_, Jan 06 2015 %o A129308 (Python) %o A129308 from itertools import pairwise %o A129308 from sympy import divisors %o A129308 def A129308(n): return 0 if n&1 else sum(1 for a, b in pairwise(divisors(n)) if a+1==b) # _Chai Wah Wu_, Jun 09 2025 %Y A129308 Positions of 0's and 1's are A088725, whose characteristic function is A360128. %Y A129308 First appearance of n is A287142(n), with sorted version A328450. %Y A129308 The longest run of divisors of n has length A055874(n). %Y A129308 One less than A195155. %Y A129308 Cf. A000005, A002378, A003601, A007862, A027750, A033676, A060680, A060681, A072627, A088722, A181063, A199970, A328026, A328165, A328166. %Y A129308 Cf. A005369, A059841, A287142, A344005. %K A129308 nonn %O A129308 1,6 %A A129308 _Leroy Quet_, May 26 2007 %E A129308 More terms from _Stefan Steinerberger_, May 27 2007 %E A129308 Extended by _Ray Chandler_, Jun 24 2008