A129316 Positive integers k such that sopfr(k) divides sopfr(k+1), where sopfr(k) is the sum of the prime factors of k, counting multiplicity.
5, 8, 15, 77, 125, 160, 252, 496, 714, 948, 980, 1045, 1053, 1260, 1330, 1378, 1404, 1430, 1508, 1520, 1610, 1750, 1862, 1890, 2170, 2491, 2680, 2821, 3094, 3100, 3248, 3400, 3591, 3610, 3652, 3808, 4185, 4191, 4384, 4452, 4500, 4598, 4906, 5120, 5145
Offset: 1
Examples
a(6)=160 since sopfr(160)=sopfr(2^5*5)=10+5=15 and sopfr(161)=sopfr(7*23)=30.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Programs
-
Mathematica
sopf[n_]:=Total[Flatten[Table[#[[1]],{#[[2]]}]&/@FactorInteger[n]]]; Rest[ Flatten[Position[Partition[Table[sopf[n],{n,5200}],2,1],?(Divisible[#[[2]],#[[1]]]&),{1},Heads->False]]] (* _Harvey P. Dale, Jul 18 2013 *)
Formula
sopfr(k+1) mod sopfr(k) = 0.
Comments