This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129334 #13 Apr 15 2022 14:57:28 %S A129334 1,-1,1,0,-2,1,1,0,-3,1,1,4,0,-4,1,-2,5,10,0,-5,1,-9,-12,15,20,0,-6,1, %T A129334 -9,-63,-42,35,35,0,-7,1,50,-72,-252,-112,70,56,0,-8,1,267,450,-324, %U A129334 -756,-252,126,84,0,-9,1,413,2670,2250,-1080,-1890,-504,210,120,0,-10,1 %N A129334 Triangle T(n,k) read by rows: inverse of the matrix PE = exp(P)/exp(1) given in A011971. %C A129334 The structure of the triangle is A(r,c) = A000587(1+(r-c))*binomial(r-1,c-1) where row index r and column-index c start at 1. %C A129334 Row polynomials defined recursively: P(0,x) = 1, P(n+1,x) = x*P(n,x) - P(n,x+1). The polynomials appear to be irreducible. Polynomials evaluated at x = c give sequences with e.g.f. exp(1 - cx - exp(-x)). %H A129334 S. de Wannemacker, T. Laffey and R. Osburn, <a href="https://arxiv.org/abs/math/0608085">On a conjecture of Wilf</a>, arXiv:math/0608085 [math.NT], 2006-2007. %F A129334 Let P be the lower-triangular Pascal-matrix, PE = exp(P-I) a matrix-exponential in exact integer arithmetic (or PE = lim exp(P)/exp(1) as limit of the exponential) then A = PE^-1 and a(n) = A(n, read sequentially). - _Gottfried Helms_, Apr 08 2007 %F A129334 T(n, k) = Sum_{j=0..n} (-1)^(j-k)*A094816(j, k)*Stirling2(n, j). - _Mélika Tebni_, Apr 15 2022 %e A129334 Triangle starts: %e A129334 [0] 1; %e A129334 [1] -1, 1; %e A129334 [2] 0, -2, 1; %e A129334 [3] 1, 0, -3, 1; %e A129334 [4] 1, 4, 0, -4, 1; %e A129334 [5] -2, 5, 10, 0, -5, 1; %e A129334 [6] -9, -12, 15, 20, 0, -6, 1; %e A129334 [7] -9, -63, -42, 35, 35, 0, -7, 1; %e A129334 [8] 50, -72, -252, -112, 70, 56, 0, -8, 1; %e A129334 [9] 267, 450, -324, -756, -252, 126, 84, 0, -9, 1; %p A129334 P := proc(n,x) option remember; if n=0 then 1 else %p A129334 x*P(n-1, x) - P(n-1, x+1) fi end: %p A129334 aRow := n -> seq(coeff(P(n, x), x, k), k = 0..n): %p A129334 seq(aRow(n), n = 0..10); # _Peter Luschny_, Apr 15 2022 %Y A129334 First column is A000587 (Uppuluri Carpenter numbers) which is also the negative of the row sums (=P(n, 1)). Polynomials evaluated at 2 are A074051, at -1 A109747. %Y A129334 Cf. A094816. %K A129334 easy,tabl,sign %O A129334 0,5 %A A129334 _Gottfried Helms_, Apr 08 2007 %E A129334 Edited by _Ralf Stephan_, May 12 2007