cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129348 Number of (directed) Hamiltonian circuits in the cocktail party graph of order n.

This page as a plain text file.
%I A129348 #51 Feb 16 2025 08:33:05
%S A129348 0,2,32,1488,112512,12771840,2036229120,434469611520,119619533537280,
%T A129348 41303040523960320,17481826772405452800,8902337068174698086400,
%U A129348 5370014079716477003366400,3786918976243761421064601600,3087031512410698159166482022400,2880726660365605475506018320384000
%N A129348 Number of (directed) Hamiltonian circuits in the cocktail party graph of order n.
%C A129348 Also, the number of ways (up to rotations) to seat n married couples at a circular table with no spouses next to each other. Cf. A007060, A193639. - _Geoffrey Critzer_, Feb 09 2014
%C A129348 The cocktail party graph may also be called the n-octahedron, n-orthoplex or n-dimensional cross polytope. - _Andrew Howroyd_, May 14 2017
%H A129348 Max Alekseyev, <a href="/A129348/b129348.txt">Table of n, a(n) for n = 1..100</a>
%H A129348 Marko R. Riedel, Math.Stackexchange.com <a href="http://math.stackexchange.com/questions/1913728/">Proof of asymptotic (saddle point method) and closed form (inclusion-exclusion)</a>
%H A129348 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CocktailPartyGraph.html">Cocktail Party Graph</a>
%H A129348 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianCycle.html">Hamiltonian Cycle</a>
%F A129348 For n>=2, a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*(2*n-1-k)!*2^k. - _Geoffrey Critzer_, Feb 09 2014
%F A129348 Recurrence (for n>=4): (2*n-3)*a(n) = 2*(n-1)*(4*n^2 - 8*n + 5)*a(n-1) + 4*(n-2)*(n-1)*(2*n-1)*a(n-2). - _Vaclav Kotesovec_, Feb 09 2014
%F A129348 a(n) ~ sqrt(Pi) * 2^(2*n) * n^(2*n-1/2) / exp(2*n+1). - _Vaclav Kotesovec_, Feb 09 2014
%F A129348 For n>=2, a(n) = (-1 + 2 n)! Hypergeometric1F1[-n, 1 - 2 n, -2]. - _Eric W. Weisstein_, Mar 29 2014
%F A129348 a(n) = A003435(n) / (2*n) = A003436(n) * (n-1)! * 2^(n-1). - _Andrew Howroyd_, May 14 2017
%p A129348 a:= proc(n) option remember; `if`(n<3, n*(n-1),
%p A129348      ((136*n^3-608*n^2+762*n-470) *a(n-1)
%p A129348        +4*(n-2)*(14*n^2+29*n-193) *a(n-2)
%p A129348        -80*(n-2)*(n-3)*(n-4) *a(n-3)) /(34*n-101))
%p A129348     end:
%p A129348 seq(a(n), n=0..20);  # _Alois P. Heinz_, Feb 09 2014
%t A129348 Prepend[Table[Sum[(-1)^i Binomial[n, i] (2n - 1 - i)! 2^i, {i, 0, n}], {n, 2, 16}], 0] (* _Geoffrey Critzer_, Feb 09 2014 *)
%t A129348 Table[Piecewise[{{(-1 + 2 n)! Hypergeometric1F1[-n, 1 - 2 n, -2],
%t A129348     n > 1}}], {n, 16}] (* _Eric W. Weisstein_, Mar 29 2014 *)
%o A129348 (PARI) { A129348(n) = sum(m=0,n-1, sum(k=1,n-m, (-1)^k * binomial(n-1,m) * binomial(n-m-1,k-1) * 2^(k-1) * ([0,k-1,2*(n-m-k);1,k-2,2*(n-m-k);1,k-1,2*(n-m-k-1)]^(2*n))[1,1] ) + sum(k=0,n-m, (-1)^k * binomial(n-1,m) * binomial(n-m-1,k) * 2^(k-1) * ([0,k,2*(n-m-k-1);2,k-1,2*(n-m-k-1);2,k,2*(n-m-k-2)]^(2*n))[1,1] ) ) } \\ _Max Alekseyev_, Dec 22 2013
%Y A129348 Cf. A003435, A003436, A003437, A007060, A167987.
%K A129348 nonn
%O A129348 1,2
%A A129348 _Eric W. Weisstein_, Apr 10 2007
%E A129348 Terms a(6) onward from _Max Alekseyev_, Nov 10 2007